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ABSTRACT

This memo describes digital integrator processing techniques
to reduce the variance of precipitation echo power estimates. The
statistical properties of precipitation echoes are reviewed and
related to measurements of atmospheric and WSR-57 weather radar
parameters, A digital integrator, successfully adapted to the WSR-57,
can reduce power estimate variance below 1 dB without compromising
the resolution of the WSR~57 radar. Although specific design param-
eters are tied to the WSR-57 parameters, sufficiently general cri-
teria are developed to permit design engineers to relate these
results to other radars. We derive the statistical properties of
echo power samples averaged both in range and time. Engineering and
meteorological factors affecting the type of averaging technique
employed (exponential weighted time average and linear range average)
and averaging intervals selected are considered in detail.

The expected value and variance associated with digital data
processing due to the analog-to-digital conversion and the arithmetic
operations are analyzed., The engineering requirements necessary to
insure a minimal signal degradation due to these effects are given.

It is shown that, for integrator parameters used, the variance
contributed by the time averaging loop (exponential window function)
is small compared with that variance due to range averaging trunca-
tion, in turn small compared with the input echo power variance.
Relations are derived between integrator and radar parameters and
minimum scale of resolved precipitation structure. Sample PPI dis-
plays of integrated echo returns from severe convective storms are
presented. -

xiidi



METEOROLOGICAL RADAR SIGNAL
~ INTENSITY ESTIMATION*

Dale Sirmans and R, J. Doviak
1. INTRODUCTION

The capability of radar as an indirect meteorological probevhaé
been recognized for some time and arises from the fact that the aver-
age power return from precipitation can be related to rainfall rate.
The essentially continuous time and spatial rainfall rate data which
the radar can provide over a large geographic area can be applied to
hydrologic and water management studies as well as basic studies of
weather phenomena.

The widespread application of radar for this purpose has not been
realized to date because the large inherent variance of the return
signal results in an unacceptable uncertainty of the meteorological
measurement. As a result most operational weather radars are used
for surveillance and qualitative measurements.

This report describes radar signal averaging using a digital
processing technique whereby the mean return signal is estimated to
the accuracy required for quantitative meteorological application. A
digital processor usually requires less calibration and maintenance
than an equivalent analog processor. The digital processing theory
presented deals with both range and time (azimuthal) integration of
echo samples to estimate reflectivity fields probed by a scanhing
radar beam. The interdependence between variance reduction of reflec-
tivity estimates, time required to achieve this reduction and spatial
correlation of reflectivity is analyzed and a WSR-57 weather radar is
used as an example to illustrate the trade-offs between these param-

eters,

*Work on this project was partially supported by the Federal Aviation
Administration under contract DOT FA72-WAI-265.



2. PROPERTIES OF METEOROLOGICAL RADAR ECHOES

The statistical properties of radar echoes returned from precip-
itation determine the signal processing characteristics required to
estimate average values (with prescribed standard deviation) of
meteorological parameters, such as rainfall rate, reflectivity factor,
etc, This section examines three commonly used receivers and deter-
mines their performance in reducing variance. We also formulate ‘
relations between-velocity variance, radar parameters, and the sta-
tistical properties of averaged echo power.

2.1 Echo Waveform

Consider an elemental volume, AV, of randomly moving meteorolog-
ical targets being illumindted with continuous waves (cw) radio
frequency (rf) power. The echo power averaged over an rf. period
(e.g., 3‘10'9 sec), assumed short compared with the time required for
the targets to move a distance equal to quarter of a wavelength, A,
may have instantaneous values as depicted in figure 1. The rate of
echo power fluctuation increases as the rate of reshuffling the tar-
gets increases. For the case of pulsed rf illumination where spatial

pulse width h is large compared
with range dimensions of AV, the
echo power will be samples of the
cw signal, figure 1, taken at times
tl, €5 etc., spaced at}intervéls
equal to the pulse repetition time
(PRT). The echo power samplgsvwill
have a time width nearly equal to

ECHO POWER, Fi(t)

N

| I
ot TIME,t,— the transmitted pulse width 7.

' However, as is usual, when meteoro-
Figur< 1. Illustration of instan- . :
%aneous (averaged over an rf logical targets occupy & range
period) echo power versus time larger. than h = CT?’ where ¢ is the
for an assumed isolated differ- R L : : g .
ential scatter volume illumin-  t9nt veiocity, echo power i1s
ated by cw radiation., = - - received continuously for a time




interval twice that spent by‘the pulse to propagate through the target
\region. Pulsed rf radiation effectiyely samples a volume, Vs’ of
meteorological targets having a range length equal to c7p/2 and an
angular width nearly equal to the antenna 3 dB beam width.(Xerr, 1951;
Nathanson, 1969). ‘In section 3 we discuss both: (1) time averages

of echo power samples associated with single volumes of range length
CTP/2 and (2) spatial or range averages of echo power (that is time
averages, during a PRT, of power returned from contiguous volumes of
range length CTP/Z). We now consider the statistical properties of
the instantaneous power and relate these to the averaging process.

2.2 Statistical Properties of Receiver Output Signals

Precipitation contained within the volume, V » sampled by the
radar pulse can be considered as a random array of discrete particles
each acting as an isotropic scatterer. The power returned from the
volume of random scatterers, or targets, is derived by assuming that
the relative phase of each target echo is statistically independent of
other echoes and distributed uniformly between 0 and 2nr. Under this
assumption, the average echo power is the sum of the power returned
from the individual scatterers. Because éecho power fluctuates about
this sum, we need to average echo power samples. However, to obtain
a large number of independent samples, the average must be made over
time periods long  compared with that required for particles to be _
displaced, relative to one another, a distance of A/4., The probabil-
ity densities associated with echo amplitude (i.e., voltage or cur-
rent) can be shown to be the solution of the two-dimensional Rayleigh
"random walk" problem (Marshall and Hitschfeld, 1953).

The output signal amplitude (voltage or current), W, of a radar
receiver can have one of many functional dependencies upon the signal
amplitude (e.g., voltage) applied to the receiver input port. Common
receiver transfer functions are (1) square law, (2) linear, and
(3) logarithmic. For example, a square law receiver provides an out-
put, W, that is proportional to the input voltage squared (i.e., echo
power input Pi). The probability density of W can be derived from

3



the density of the input voltage envelope, Vi(t), of -the input
signal s(t),

s(t) = V,(t) exp[j(ut + ()] (L

where w = rf angular frequency (radian/sec), &(t) = instantaneous
phase (about reference phase «t) of input signal uniformly distributed
over the interval -m, m. Table 1 presents some echo statistics at
the receiver input and table 2, the statistics at the output for each
of the three receiver transfer functions assuming Vi’ has a Rayleigh
distribution. Also, table 1 shows density functions for the In-phase,
I, (real part of s(t)) and Quadrature phase, Q, (imaginary part of
s(t)) components of the input phasor. These density functions have

a normal distribution with a variance proportional to the average
input power,lﬁg, contributed by V_. For a pulsed radar ?i is defined

as . N
B, =lim & 5 P (2)

P. = lim s+ .

+ N e Ng 4=1 %

where the Ns samples are obtained at the pulse repetition rate.

For a square law receiver, we note from table 2 that the most
probable output amplitude is zero with mean and standard deviation
proportional to the averagé (or mean) input power, ?i. On the other
hand, the logarithmic receiver has an output voltage (or current)
proportional to the log of the input mean power, but a standard
deviation'independent‘of input power.

The meteorological parameter required is reflectivity (propor-
tional to ?&) from which liquid water content and rainfall rate can
be estimated (Battan, 1959). The P values of meteorological interest
may easily span a range of 106 and often the choice of receiver type
hinges upon this large dynamic range requirement. Because of the
relative ease with which a logarithmic transfer function can be real-
‘ized over the range of F&, logarithmic receivers are usually selected.

However, the need for large dynamic range must be considered in
relation to the estimate accuracy for each receiver type. Table 3
shows the expected value and Standard deviation (S.D.) of the pawer

4




Table 1. Meteorological Echo Stat.stics at Receiver Input

PROBABILITY MAX. PROB. MEAN ~ STANDARD
DENSITY DENSITY PROFILE | MODAL VALUE VALUE - DEVIATION
Input Amplitude . '
v, = (X2 + Y2) 2V e'ViQ/RiISi ';1” R.P, - [mR.7, : :
1 — i~ el R _%_..1_ i ?2L 1 1/2\,(4-11)111.?1.
= _ " - 0 :
Pi = Vi /Ri RiP:. <
By v
i
X*/R,P, |
Input Quadrature e i*d X, R
Components — M 0 0 j_Pl
(X or Y) TR, P, @] 2
11 4
o
0 X

*Ri is the receiver input resistance.




Table 2. Meteorological Echo Statistics at Receiver Output |

MAX. PROB. | MEAN VALUE |STD. DEV.
RECEIVER TYPE PROB [W]  |DENSITY PROFILE [MODAL VALUE A7 o
| )
=
: -W/arR.P =
' o 2 e itd 2] - -
Square Law W= av, e o 0 ar.P, aRr.P
1 aRr.p. % Rl 1 1 1
i 11
W .
2,2 =
-W"/a"R.P, 5 =
Linear W= av, AL 7072 RF, | WV ™RsFi [Ska-nrE
. a“r.P 2
11
= bl°g<cv:12) exp{- - ?W/mb - |
| mb ~ o ® z - , =
Logariimmic| | | RiFi)| |blog(cr F;)[blog(0.56cR B 557D
_ 1 bmeR.F, g/ - |
= Inl0 -~ :
3 W
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Table 3, Cogparison of Expected Values and Standard Deviation of
Estimates 5 of Mean Input. Power Pi'
DYNAMIC RANGE EXPECTED VALUE S.D. OF INPUT
OF W FOR 106 OF INPUT POWER POWER ESTIMATES
RECEIVER RANGE OF Pi 'ESTIMATES (UNBgASED)
A = ’
E(B, ] VARE[B{]
Squaré Law 10° ?& 'Pi//k
Linear 10> P, /4 1.05 B, //k
Logarithmic 6 0.56 iD’i 1.28 Fi//k

estimates, ﬁi’ of ?ﬁ obtained by averages of k independent samples
from each receiver type. The table 3 results are derived in appen-
dix A. Note that only the square law receiver provides an unbiased
estimate and has the smallest S.D. Since output averages for both the
linear and 1bgarithmic receiver result in a multiplicative bias of the
estimates of Fi, we must multiply each estimate by the appropriate
factor to obtain F&. These estimates have a S.D. (about the unbiased
expected value Pi) that is tabulated in the table.

Although the logarithmic receiver provides an estimate having
the largest S.D. for a given number, k, of independent samples, the
number required to achieve a reasonable accuracy is acceptable for
most meteorological situations so that antenna scan rate and PRT
requirements are not severely compromised. Hereafter we restrict our
discussion of digital integrator performance to processing the loga-

rithmic receiver output.
2,3 Statistical Dependence of the Samples

The total number, Ns’ of samples obtained from the volume VS is
determined by the antenna beam width, scan rate, and PRT., However,
since considerable correlation may exist from sample to sample, we

must decermine the equivalent number of independent samples, NI,Ain

7



order to estimate the variance reduction indicated in table 3. The

degree oif correlation between samples is a function of radar parame-
ters, (e.g., wavelength, PRT, beam width, pulse width, etc.) and the
meteorological status (e.g., degree of turbulence, shear, etc.) of °
the sample volume VS. In the following, we relate these parameters

to sample correlation in order to estimate NI’ Although many of the
results are well documented in the literature, they are listed here

as a convenient reference because they form the basis for the design
of the digital integrator.

2.3.1 Statistical dependence related to input power spectrum

If the estimate Wk of the output mean W is derived from a linear
average of k independent samples, the output single sample estimate
variance, ow? (table 2), is reduced by a factor of 1/k (appendix A.2).
That i 2

2 _Jv (3)

However if we have N samples in which correlation exists from sample
to sample, estimate varlance o (W) is not reduced in proportion to
l/Ns. Instead for a stationary process and equi-spaced samples, the
estimate variance for the NS sample average is given by (Nathanson,
1969),
2 g st Ne-m| o
o) = o, Eown RZ PO (4)
s s
where p(mTS) is the normalized autocorrelation of the samples, m is
an integer, and TS is the sample interval (PRT). The autocorrelatiop ‘
can be expressed in terms of the power spectrum of the random output,
"and the parameters of this spectrum (in particular spectral width)
can be related to atmospheric and radar'system parameters. A
Gaussian input spectrum can feasonably approximate spectra associated
with precipitation echoes. To rigorously determine the autocorrela-.
tion of the output W, we should transform this Spectrum by the




receiver transfer function (nonlinear for a logarithmic and square
law receiver) to deriVe the output correlation function needed in
(4). However, the system parameters are more readily related to the
power spectrum of the input voltage Vi and its corresponding auto-~
correlation. To simplify the analyses, we restrict the following
deve;opment>to power spectra at‘the receiver input and assume that
the deduced equivalent number of independent samples Ni is equal to
that available at a square law receiver output. For this case and

a normal distribution of amplitude at the input, the output correla-
tion function is derived (Davenport and Root, 1958) and we assume

that log and square law receiver N_'s are equal.

I
Assuming the input power spectrum to be Gaussian
. f2
S(f) = So exp[- 2] . (5)
20f

The normalized autocorrelation function, derived by taking the Inverse

Fourier Transform, is

2

R(T) = exp[—_QT 5] . (6)
I
The parameters Op and o are related by
g = 2
T 2mog (7

where the quantity °f2 is the pre-detection spectrum variance. The
post detection variance, i.e., the variance of the amplitude fluc-
tuation spectra that determines the correlation is 2of2 (Lhermitte,
1963). The pre-detection frequency spectrum variance is related to
velocity variance of the meteorology, Gv2’ and to the radar wave-
length, A, by the Doppler equation.

2.y . @)

Substituting this and accounting for the detection process, we have

the correlation



72 16n2 c 2
p(T) = exp[- ] . (9)
A

Combining (3), (4), and (9), the equivalent number of independent

samples, NI’ is expressed as

N -1 2 2 2
2 _ s N_~|m] 16n°o,, " (mI )
o gg_)_ = (NI) l = Z S > exp[__ V2 S ] . (10)
Oy m=-(Ns~l) NS b

For correlated samples the difference between (10) and continuocus
integration is small (Lhermitte, 1963). Assuming correlated samples
and that NST§>>l/of,, we can approximate the solution for the number

of independent samples by

_ 0, NS TS
NI 4fTT —-—)‘——-— . (ll)
By setting NI equal to Ns’ we find for sampling intervals
A
TS = 77 5, (12)

all Ns samples are practically independent. Decreasing TS below
this value would cause the samples to become correlated, which would
result in NI decreasing (for fixed NS) and the averaging process

becoming less efficient.
2.4 Veiocity Variance Relationships

The velocity variance is a function both of radar system param-
- eters such as beam width, pulse width, wavelength, etc., and the
meteorological parameters that describe the distribution of target
(e.g., water drops) density and velocity within the sample volume
(Sirmans, 1970). Relative radial motion of targets generates
variance in the spectrum of input voltage. For example, turbulence
produces random relative radial motion of drops within Vg. Wind

10




'shear causes relative radial target motions as will differences in
-fall speeds of various size drops. There is also a contribution to
variance caused by the "apparent" relative motion of targets. As an
example, targets moving at uniform speed across the radar sample
volume VS have different radial éompdnents of velocity because of
the finite size of Vs. This effect, which is more pronounced as‘Vs
gets larger, is known as beam broadening and exists for uniform
target motion either perpendicular or parallel to the beam axisj
however, the latter is much smaller than the former. In addition,
since the sample volume is sweeping through space (due to antenna
rotation), the radar does not receive echoes from identical targets
on successive samples. This change in target from pulse to pulse
results in an apparent fluctuation of radial motion. This is more
clearly understood by referring to figure 1 and assuming that we have
two contiguous elemental sample volumes AVl, AV2, whose return power
is statistically independent. The time between independent samples
is not only determined by the rate of reshuffling of targets within
Avl (or AV2), but also by the time :equired for the antenna beam to
move from Avl to AV2. The power reﬁurn will change more rapidly,
independent of particle motion inside the sample volume, the faster
the antenna is rotated. Thus the variance of the spectrumlincreases
in proportion to the antenna angular velocity,

We assume that each of the above variance producing mechanisms
are independent of one another, so that the total velocity variance
o 2 can be considered as a sum of the variances contributed by each

v
(Lee, 1964). That is,

2 _ 2 2 2 2 2 A
Uv——ds +0‘b +Gr+°d +0't (13)
where
032 = variance due to shear
°b2 = variance due to beam broadening
crz = variance due to antenna rotation

11



variance due to different drop size fall speeds

Q
Il

variance due to turbulence.

Q
i

The components of °b2’ orz, and °d2 are related to the radar
and meteorological parameters (Nathanson, 1969) as

2 _ . 2
o = (0.42V06251n8) (14)
2 _ . 2
o4 = (od051n6e) (15)

where Vo is the mean wind velocity at the center of VS, § is the
azimuthal angle relative to wind direction at the center, and 62 is
the two-way half-power beam width in radians for an assumed cir-
cularly symmetric antenna pattern having a Gaussian distribution of
power., The variance, Ggo’ is due to the spread in terminal velocity
of various size drops falling relative to the air contained in V_.
Lhermitte (1963) has shown that for rain, ogo equals 1.0 (m/sec)” and
- is nearly independent of drop size distribution and rainfall tate,
The elevation angle, 6., is to beam center, and o is the angular
velocity of the antenna in radians per second. It is easily shown
that in terms of the usually specified one-way half-power beam

width, Gl,

62 = 0.719l . | (17)

The wind shear variance term is assumed to be composed of three

o 1ndependent contributions, i.e.,

o 2 - 02 + 02 +'02 s S (18)
" where each term is due to.vertical, perpendicular, and radial shear,
respectively. The component of variance due to vertical shear is

‘given by (Nathanson, 1969) -

12




2 . _ 2.

Ogy = (O.42KVR92) | : (19)
where Kv is the vertical shear of radial velocity,(m/sec/m) and R (in
m) is the range to the center of VS. Equation (19) is only valid for
small elevation angles, and for high elevation angles (19) must be
replaced by

2 _ 2
05y = [0.42KVR62cosee] . '(20)

The variance 02 is produced by gradients in radial velocity

Sp
measured perpendicular to the vertical plane containing the beam axes.
This contribution follows directly from (19) and is
-2 2
.osp (0.42KPR62) (21)
where Kp is the perpendicular shear.
Finally, following the development of Sirmans (1970), the variance

2 .
Ogp 18
, X °n?
Ogp = 48 . ’ ' (22)

where Kr is the radial gradient of radial velocity (i.e., radial shear)
and h is the spatial pulse length (cT). Combining (17) through (22),

we obtain the total variance due to shear,

2.2

X _“h
2 _ 22, 2 2 2 T
o5 = 0.090) "R(K " + X “cose,) + o . (23)

S

The variance °t2 due to turbulence is somewhat more difficult to
model. Assuming that turbulence is a conglomeration of eddies whose
mean diameter is much smaller than the smallest dimension of Vs’ and
that an average eddy is a solidly rotating, cylindrical mass of air
having a mean angular velocity, w, > and an axis perpendicular to the
beam axis, Sirmans (1970) has shown that the variance is given approxi-

mately by
13
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0.0 = (52 (24)

where r is the average radius of the eddies.
2.5 Estimated Variance Values for a Weather Radar Example

In this section estimated values of the variance compdnents are
compared to determine if any terms can be neglected in practice. For
sake of example, the WSR-57 radar parameters are taken as representa-
tive of weather radar systems and used to determine the deéign criteria
for the digital integrator discussed in section 3.

2.5.1 Antenna rotation

The WSR-57 radar operates at a wavelength near 10 cm, and the
antenna rotates at an angular rate of 3 rpm. At this angular velocity,
the variance due to antenna rotation for the one~-way 3 db beam width
of 2.2° is determined by substituting into (16).

-1
2. 3(2m) x 10°* x 57.3 _ ..~4 2 __ -2
O T I0.7x 80X JTx 2.2 10 m sec (25)

which can be considered negligibie compared with variance estimates
that follow. '

2.5.2 Fall velocity variance

In meteorological radar measurements of parameters such as rain-
fall rate, where elevation angles are typically below 10°, the variance
due to the distribution of fall speeds is, upon substitution into (15),

2
%4

2

< 3.0 (1072) n? sec™? (26)

and can be considered negligible..
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2.5.3 Beam broadening

Assuming 8 = /2 and a mean wind speed Vo of 15 m sec"l (e.g.,
approximately 30 kts) and a half power (one-way) beam width of 2.2°,
we obtain from (14),

0,” = 3(107%) n® sec™® . (27)

2.5.4 Shear

3

A value of vertical shear K,» equal to 4 x 10 sec-l, has been

suggested by Nathanson as appropriate for arbitrarily oriented radars.
In severe storms, Crawford and Brown (1972) have found vertical shear

values as large as 3 X 1072 sec™ and horizontal shears as large as

10"'2 sec-l. However, for illustration, we assume Nathanson's value as
more typical of average vertical shear in precipitation regions. Hor-
izontal shear usually is less than vertical shear, é5pecially in '
stratiform situations, and for sake of simplifying the estimates, we
neglect cip as well as ogr in comparison with va' Thus we obtain by
substituting into (23), the estimate of variance due to shear (for

Ge small),

0.2 > (4.6 x 107°)%R? n? sec™ (28)

where R is the range in meters. By comparing (28) with (25) through
(27), except in regions close (i.e., R < 10 km) to the radar site,
we find the contribution to variance from shear predominates.

2.5.5 Turbulence
Variance due to turbulence is difficult to/estimate and varies

considerably with the type of precipitation being viewed by the radar.
Preliminary data obtained at NSSL indicate that ot2 may vary from an

15



: -2
average of 4 m2 sec for a convective system to about 1 m2 sec for

. . 2 -2
stratiform rain. We assume a value of 2 m~ sec .

2.5.6 Composite variance

Using the above estimates and neglecting crz, odz, obz, we obtain
the following reduced formula for Oy '

o, = /2 + (4.6 x 107°)°R° m sec™ , (29)
which gives the velocity standard deviation as a function of range R
(in m) for the WSR-57 weather radar parameters. Equation (29) is
plotted in figure 2. Shown for comparison is the velocity standard
deviation computed for NSSL's WDS~-71 Doppler radar, which has a one-~
way beam width of 0.81° and also operates at a wavelength of about

10 cm.
2.6 Number of Equivalent Independent Samples

Results of section 2.3 and 2.4 proyide the means for estimating
the number of independent samples that may be obtained for given

o meteorological and radar parame-

8f e ters. Shorter PRT's (which provide
Y el more samples per unit time to
; . WDs-71 estimate mean input power) result
5-4- in samples having increased cor-

2r relation, and estimate variance,

o — VAR[ﬁi], may not be reduced in

© 40 80 120 160 200 240 280 320

RADIAL RANGE , R, Km proportion to the inverse number
Figure 2. Expected velocity spec- of samples processed.
trum standard deviation, o_, for
the WSR-57 and WDS-71 rada¥
systems. The radar wavelength
is 10 cm and a vertical shear
coefficient, X, of 4(10-3) sec™t
is assumed.
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2.6.1 Independent sampies due to spectrum variance

The ratio of the equivalent number, NI’ of independent samples
to the number, Ng, of total samples collected versus the standard
deviation Qf the velocity spectrum, Oy» is shown in figure 3 with the
sampling interval, Ts’ as a parameter. This is a graph of (10).

2,6.2 Independent samples due to sample volume replenishment

Acquisition of a sample series while the antenna is rotating
results in continuous alteration in illumination of the differential
scatter volumes contained within the spherical shell of width CTP/Z.
Because the echoes from differential scatter volumes, AV, are statis-
tically independent, we can apply the methods outlined in appendix C
to show that the echoes from the AV!'s for two pbsitions of the beam
illuminating a uniform reflectivity field are correlated due to a
finite two~way beam pattern. Al-~
though. appendix C derives range

sample correlation due to finite
pulse width (i.e., range samples
may have spacing less than a pulse-
width), the solution for angular
samples is easily executed by ex-
changing differential range
volumes with differential angular
volumes and pulse shape with two-
way beam pattern. The correlation

&
/<CRADAR WAVELENGTH
: cm

= [0

/& TqINTERVAL
7 v BETWEEN SAMPLES
1

of angular samples is thus seen to 0.1 ' 4 P it
‘ ! 2 3 4 5 678900

be the correlation between the oy, m sec”!
two-way pattern lagged by the
angular sample interval. A good

Figure 3. Number ratio, N./N_ of
equivalent independent sgmpies
approximation for the antenna to the total number of samples
collected versus the velocity
spectrum standard deviation, o_,
uniform illumination of a circular and the sampling interval, TS.V

pattern is obtained by assuming a

17



aperture (Silver, 1949).

Figure 4 shows the autocorrelation coeffi-

cient for adjacent samples for this pattern versus the angular sample

interval normalized to the one-way half-power beam width.

For example,

the correlation coefficient between echo samples for the same range
but for different beam positions of the WSR-57 operating with an antenna

velocity of 3 rpm will be approximately 0.98.

At a wavelength of 10 cm

and an assumed Gaussian correlation function, this effect would be
equivalent for achieving statistical independence to a Doppler variance

of approximately 0.18 m? sec”2,

2.7 Summary

The velocity variance has'been related to the radar character-
istics and to the meteorological parameters (e.g., shear, turbulence,

1.0
Eos
W
Q
-
8(16
(8]
5
o4
E
-
w
%
€ 0.2
(&)
ol b |
0 05 10 15 20
SAMPLE SPACING IN ONE WAY
HALF POWER BEAM WIDTHS,
- Teve,
Figure 4. Correlation coefficient

versus ‘azimuthal sample spacing
in one-way half-power beam width
for a uniformly illuminated cir-
cular aperture and an uncorrela-
ted, uniform reflectivity field.

etc.) of the sample volume. The
radar wavelength and PRT's haVe
been shown to control sample cor-
relation, antenna beam width, and
shear control velocity variance,
and, along with the transmitter
pulse length and dwell time, set
bounds on the output data in terms
of both resolution and accuracy of
reflectivity estimates. If any
options are availdble, these param-
eters should be adjusted to opti-
mize the processing scheme in terms
of the expedted velocity variance.
A decrease of wavelength will
decrease the time to independence
for a given velocity variance, but
in general precipitation attenu-
ating the incident power at wave-
lengths of less than 10 cm makes




quantitative measurements difficult. The PRT, dictated usually by

the unambiguous range coverage required for the expecteéd meteorological
conditions (i.e., size or range depth of storm) and by average power
or duty cycle considerations, is the data sampling rate that determines
the -correlation of the input samples. From figures 2 and 3, we see
that for a 10-cm system with a beam width between 1° and 3°, the PRT,
which provides a high rate of practically .independent samples, is
between 5 msec and 10 msec. Thus the PRT's significantly shorter than
this cause the input data to be redundant.

The antenna beam width controls sample correlation by its rela-
tion (e.g., (13) and (23)) to velocity variance. A more important
property of beam width is the minimum azimuthal and elevation scale

“pesolved by the radar. Therefore, beam width is selected on the basis
of the minimum scale of the weather to be resolved and not on sample
correlation. Estimates of the lower limits of the precipitation scale,
based mainly on hdgh density rainfall gauges, are about 300 to 500 m
in the horizontal plane (Nathanson, 1969). Estimates of the lower
limit in the vertical are about 3000.to 4000 m. Although it is imprac-
tical usually to resolve the horizontal scales at any appreciable
range, the beam width should be small compared with the reflectivity
scales within the storm.

The desired reduction in variance of mean power estimates quite
possibly reqpires'a dwell time in excess of that available by rapid
scanning of a large volume of space. There are other means to increase

| ‘the number of independent samples if dwell time is fixed by beam's

; angular rotation, and these have been discussed by Marshall and Hitsch-
i feld (1953). One technique that is practical to implement; especially
; in radar systems containing Klystron amplifiers, is to change fre-

. quency . from pulse to pulse (frequency agility). Marshall and Hitsch-

f fe;d predicted and Nathanson verified that a radio frequency change
between consecutive pulses by an amount equal to Tp-l would decor-

. relate the samples. Wallace (1953) has shown that an increased number
of independent samples can be obtained (at the sacrifice in spatial
resolution) by averaging over several spatial sample volumes. These
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samples can be selected in range or in angular increments, or a com-
bination of both. 1In the next section we discuss spatial (range) and

time averaging techniques.

3., AVERAGING TECHNIQUES

The large inherent variance of precipitation echoes (31 dB2 at
the output of a logarithmic receiver) requires averaging to provide
an estimate of the mean signai intensity with the accuracy needed for
meteorological interpretation. An estimate of return power having a
standard deviation of about 1 dB would be adequate for usual applica-~
tions. Thus the mean estimate should comprise, in the least, 31
independent samples. Reduction of estimate variance can be achieved
through range averaging--an average taken over several sample volumes
in range-~or time averagigg--an average taken over several pulses
returned from the same sample volume~--or a combination of these two
methods. A combination technique is usually more desirable, since it
reduces the number of samples provided by either method alone and
affords some flexibility in selecting the dimensions of the volume ove:
which averaging is perfdrmed (i.e., averaging volume). The averaging
volume has range dimension determined by the number of contiguous range
samples of length ct_/2 used in range averaging and an angular width
determined by the antenna beam width, the integration time (i.e., num-
ber of PRT intervals spanned in time averaging), and antenna argular
velocity. Strictly speaking, range averaging is a time average of
return power within one PRT; however, since its time scale corresponds
to the range of targets, we define it as a range average.

The choice of sample window function (i.e., rectangular, expo-
nential, etc.) used for weighting the samples depends upon whether
range or time averaging is being performed and upon the desired format
of the output. An exponentially weighted window is practical to
implement and provides a continuous estimate of the mean value (Gold
and Rader, 1969). Continuous here implies that the mean output is
updated with each new sample, and the output at any time is an average
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of previous inpufs weighted by the window function. Although a scan-
ning rectangular window provides a continuous output, it requires con-
siderable data storage and thus its cost usually is prohibitive.
.Averages'of time samples in a block can reduce the cost considerably, -
even though the integration is not strictly continuous (i.%., the
rectangular window shifts in time steps equal to time required to
collect the sample block) (Hall et al., 1963). This technique is
implemented where output averages can be recorded or viewed in discrete -
steps. The WDS~71 Digital Integrator uses this technique.

Even though the exponential window is advantageous for display and.
cost, it may not be suitable for range averaging. Reflectivity gra-
dients as large as 20 dB/km are not uncommon, and an exponential range
window having a range "time constant” cT, may give undesirably large
contributions in the interval ch from large reflectivity regions out-
side,ch. These contributions arise from the existence of the expo-
nential tail that weights these large reflectivity regions.

A rectangular window only weights the contribution within the
window, and since discreteness in range may not be bothersome for
display, a rectangular range window is used in the digital integrator
(fig. 5) described in section 3.2. An exponential window is used for

time averages.

Storage of Integrated Range
and Time Samples for each
Range Averaging Interval

y

Log Video Analog to R Integration of Integration of Time Digital to To Display
Receiver — ¥ Digital Range Samples Samples Analog ~ * Equipment
Output Converter Exponential Window Converter

4

_ To Digital
Recorder

" System Timing

Figure 5. Digital integrator.
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The theory of range and time averaging for the digital intégrator
is given in sections 3.1 and 3.2, respectively. The receiver is
assumed to be logarithmic, and its output applied to the digital inte-
grator. Sample correlation and receiver noise influence on integrator
performance are analyzed, and relations between integrator, radar, and
meteorological parameters are derived. Much of the theory in the
following sections applies equally to analog integrators. -Digitization
and quantization influence on the accuracy of integration is discussed

in section 4.
3.1 Range Averaging

The return signal is averaged over a range interval chosen by
consideration of the radarts beam width, range at which measurements
are to be taken,'type of meteorologicél situations, etc. Range aver-
aging the'parameter log Pi introduces a systematic bias (derived in
appendix B) of the estimate caused by reflectivity gradients, which
will limit the maximum range interval useful for averaging (Rogers,
1971). Nevertheless, we have a reasonable latitude available in
choosing the range interval, |

.The incremental spacing, Tgs between samples multiplied'by the
number of range samples, NR, averaged gives the range averaging in-
terval, AR. The sampling increment is chosen by considerations of the
autocorrelation of the consecutive range samples of return signal plus
receiver noise. The number of samples in the range interval is
restricted to a power of two to facilitate the digital averaging proc-

ess,
3.1.1 Range correlation of echo samples

The echo Sample autocorrelation versus range (fig. 6) is derived
in appendix C for an assumed rectangular transmitted pulse, wide band

receiver, and uniform reflectivity field. For these conditions, the
normalized autocorrelation of echo power is (C.9)
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gl |
R 0 < ITSI <7

p (1) =
s T
. P P
= 0 otherwise . (30)
where T_ = range sampling increment or lag time. Sampling the echo at

s ) .
time. intervals less than the transmitter pulse width results in a

successive sample correlation. Nevertheless, usually it is desirable
to sample at an increment smaller than the pulse width to reduce the
variance contributed by receiver noise. Although this increment re-
sults in correlated signal samples and data redundancy, it will not
appreciably decrease the overall éffiéiency or increase integrator
cost since the range averaging cibcuits, being common to all locations,
require no pulsejto~pulse storgge. If T is small compared with TP;

we will achieve an-estimate variance smaller for the case of noise
alone than for signal alone as discussed in the following section.

3.1.2 Range correlation bf noise samples

Quite often the bandwidth of the receiver may be about 2 to 3
times the reciprocal of the transmitter pulse width, and since the
noise statistics reflect this bandwidth, the noise samples will not be

correlated as tightly as the

return signal.
If the receiver frequency 1.0

response is approximated with a
Gaussian function, the noise auto- v c{?
correlation is |

| 0 -Tp 0] Tp ,—

pN(T) = expl~ 7.61(74B) 1 (31)

Figure 6. Echo sample correlation

wnere 3 = 3 a3 banduiath of the  inage (tine), 1, for o rec-
receiver. Representative values uniform reflectivity field.
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of oN and pg are given in table 4 for a receiver bandwidth of two

and three times the reciprocal of the transmitter pulse width. The
noise samples become Significantly correlated for a sampling increment
receiver bandwidth product less than about 0.5. Thus sampling incre-
ments much less than 0.5/B will not result in significant variance
reduction. This sampling increment (i.e., 0.5/B) suggests a range
sample increment much smaller than that based solely upon pulse width
and signal correlation.

3.1.3 Variance reduction due to range averaging

Averages containing correlated samples (i.e., case of
ITSI/TP < 1) have an estimate variance, 02(<Pi>), that depends not

only on the number, N,, of samples, but also on sample correlation.

R
The estimate variance in this case is given by (4),
02(<P>) Ng-1 N~ {mj|
1 = Nl = _ELQ__ p(mrs) s (32)
0i2 IR m=~(NRfl) NR

Table 4. Autocorrelation of Noise and Signal Versus the Sampling
Increment-Receiver Bandwidth Product.

Autocorrelation o Autocorrelation
of Noise of Signal, Pg

T4B : Py L 2/B ™ = 3/B
0.1 © 0.931 o 0.95 0.967
0.2 0.750 © 0.90 | 0.933
0.4 0.317 0.80 0.867
0.5 v 0.149 0.75 0.834
0.6 0.075 | 0.70 0.800 |
0.8 » 0.010 - 0.60 ‘0.733'
1.0 0.0008 ~0.50 : 0.667
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where

<Pf> = spatially averaged estimate

°i2 = variance of input to the averager (i.e., 31 dB2)
NIR ~ = number of independent range samples

Np = number of range samples

p(mTS) = autocorrelation of the samples.

The number of independent range samples, NIR’ obtained for various
values of 'rs/'rp is given in figure 7. This number neglects receiver
noise and applies without correction (calculated standard error within
10 percent of true standard error) for signal-to-noise ratios, S/N, |
greater than about 10 dB. For signal levels below this value, the
signal plus noise estimate variance, o Ostn (<P:>), needs to be corrected
as shown in figure 8. This correction comes from weighting the estimate
variahce, US (<P >), for signal alone and noise variance [i.e.,

(<P >)] by the1r respective power weights, dividing each by their
resPectlve independent sample number (1.ef, NIR and NR’ respectively),
and summing the result. The curve in figure 8 assumes NIR/N << S/N
and S/N = 1. Because noise samples
are uncorrelated, the number of
independent range samples increases

Ok . Ts/Tp =1.0
=0.8
=0.6
0.4
=0.39
WSR-57
=0.2

as S/N decreases.

3.2 Time Averaging

=0.1
The time or pulse~-to-pulse

NUMBER OF INDEPENDENT
SIGNAL SAMPLES, Nyg
o

averaging of the range averaged
signal is accomplished by a digital N a4 8 16 32
lowpass filter. The transfer NUMBER OF SAMPLES

Nr

characteristic of this network
Figure 7. Number of independent

samples, N..,, versus the number
window" and a continuous mean value of samples; RN » with sampling
1ncrement/transm1tter pulse
width ratio, T /T , 4s a param-
course depends on the order of a eter. p

results in an exponential "time

estimate. A given estimate of
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20 given input series; but since the
order is random, the output esti-

b4
N$ mate is equivalent to a linear
-E 1.5 averaging over a period determined
T: by the multiplier constant (B) of
the digital network. The elec~-
1.0 T 1 = y tronic circuitry required to
) S5 10 15 20 . . . . .
implement the operation is simpli

S/N - dB L.
fied considerably by limiting the

Figure 8. ,Ratio of signal vari- multiplier constant to values
ance, o.~, to the,signal plus given by 2 " where n is-an integer.
noise variance, o_, , Versus . . )
the slgnal—to-n01§e power In this section we discuss
ratio, S/N. the theory of the digital lowpass

filter and compute the statistics of its output.

3.2.1 Digital lowpass filter theory

The following analyses shows that the algorithm describing the
digital lowpass filter (appehdix D discusses filter properties) pro-
vides an unbiased estimate of the input mean (i.e., mean output of
range averager). Even though the lowpass filter acts to average an
infinite number of possibly independent samples, estimate variance will
be finite because sample amplitudes are exponentially weighted. Hence,
to obtain estimate variance, we must determine the equivalent number
of independent samples, N , yielded by the filter. The variance re-
duction factor (i.e., Nef ) is derived as a function of B for statis-
tically independent input samples. This is expanded in section 5 to
include dependent input sampiles. To simplify the analyses, we con=~
sider the output from one range averaging interval which occurs at
periodic intervals equal to a PRT. .

The signal flow diagram of the time integrator is depicted in
figure 9. The algorithmrdGSéribing the time integrator is
Von B Vin * (3 B) (n-l) £33)
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where

th . S e : :

Vin = the n~ input sample BVin o I R Von
(output of the range |
averaging circuit) - (1-B) 'DE'-iAY= PRT.

= | 1-B)Von-1)

Vo(n-l) = the output after
(n-1) samples

8 = 27" where n = 1, Figure 9. Digital time integrator
2. -3 flow diagram..

, , ® o @& . .

Iterating (33) and assuming the boundary value, Voo = 0 for Vin = Vio’
the output Von may be expressed exclusively iﬁ texrms of the input as
n-1

- - m
Von = B x§=0 (L -8V

i(n-m) ° (34
When input samples are drawn from a population having a mean value Vﬁ,
it,is clear that A

_ N n-1 m

V. _=8V.2 (@=8) . (35)

on N m=0

As (35) approaches steady state (i.e., n » «), the sum becomes an
infinite geometric progression with first term value of unity and a
common ratio of (1 - 8). In the limit the output, V., is

thus, the butput is the population mean and the algorithm provides an
unbiased estimate.
The variance, ng’ of an n sample estimate is expressed as
2 2

_ o 2
Oon = Von = (T0° - . (36)

The second moment, Vgn, is obtained by averaging the square of (35).
That is
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7 _ 20"l n-l m q
Vi =8 % L (A-B) (A-B) V., (V.. | . (37)
on =0 q=0 i(n-m) "i(n-q)
i i i on and Ma
The expected value Vi(n—m) Vi(n-q) is given by (Burington and May,
1953)
= +V V 38
Vi(n-m;—vi(n-q) Pps %2 %5 vr vs (38)
where
r = n-m; S = n-q
Ppg On Og = covariance of Vf Vg
Pps = correlation coefficient
On,s = standard deviation of Vir’ Vis
Vf,s = first moment about the origin of Vr’ Vs.

Equation (38) may be simplified by noting that for statistically in-
dependent samples (a good assumption for the WSR-57 parameters, see
figs. 2 and 3)

Ppsg = 1 forr = s

forr # s

i
(o]

prs

and that Op = Og = 04 the standard deviation of the input, and
~ furthermore Vi = Vs is equal to the mean of the sample population V&.
 Substitution into (38) results in

2, o2 _ .
Vi(n-m) Vi(n-q) =00tV forr = s
(39
=72 ‘ :
Vi (n-m) Vi(n-q)‘_ V& forr #s .
‘Upon substituting the above into (37), we obtain
e o om-1 n-1 n-1
veo=8202+95h s a-P+7v262z T @™ @0
i 1 — 1 - —
p=0 m=0 q=0
m#q
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where we have used r = s = p; Expanding the first term of (40) into
the sum of two series and combining the series containing V}z.with the
second term of (40), the moment expansion reduces to

—_ n-1 : m-1 m-1 -
vio=82o’ s ae®+?9%z o™ @
1 p._._..o - _ :

m=0 qg=0

The mean squared value, (Vbn)z, is obtained from squaring (35)

n-1 n-1
@ 2 =629 ez @e?. (42)
. 1 m=0 . p~0

Substituting (42) and (41) into (36), we obtain

n-1
2 =g202z g . 43y
p=0

In the steady state (43) can be expressed as a sum of an infinite geo-
metric progression. That is, the output variance 002 is given by

2 2 _ .2 2 n-1 2p 32"12
o =limo_ =8" 0, Uim T (1B)F = ——=—5— . (44)
o o on 1 e p=0 - [1-(1-8)7)
Therefore _
o 2
O = ..?_/.-; _J;_
c.2 28 N ° (43)

i
Equation (45) relates the input and output variances and defines the
equivalent number, Ne’ of independent time samples for a given multi-

plier constant B.
3.2,2 Equivalent time constant and correlation of output estimates
The time integrator response results in an exponential correlation

of the successive output averages (i.e., at intervals equal to the PRT)
for a given range averaging interval. As shown in appendix D, the
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equivalent time constant, Te’ of the digital integrator, approximated
by the first two terms of (D.7) is

r = 2B S (46)

where Ts is the time interval (PRT) between input samples. The nor-
malized autocorrelation of the output is given by (D.16)

(n)
Rp = 47)

T
= exp [- 71 .

Te
Thus samples of the output at time intervals, T, less than about 3Te
result in a redundancy of output data.

4. VARIANCE AND BIAS DUE TO QUANTIZATION

Digital processing introduces a variance and, in some instances,
an error (bias) due to uncertainty associated with the digital number.
Here we determine the bias magnitude and estimate variance in order to
specify the digital word length and processing technique needed to
achieve the required estimate accuracy. The digital processing used
in the digital integrator can be divided into three steps: (1) analog
to digital conversion, (2) range averaging, and (3) time averaging.

- The expected estimate value (i.e., bias) and variance resulting from
these three operations in cascade is derived. '

4.1 Analog-to-Digital Conversion

The first operation is the analog-to-digital (A/D) conversion.
The conversion should span a received power range of about 60 dB, and
assuming a log receiver responSe and linear quantization, the digital
_number will represent equal increments of log P. For quantization by
',truncation,'theAexpected bias associated with this conversion is
~ one-half of a quantization step (Gold and Rader; 1969). Truncation
v results in a systematic underestimate of true value. If the
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quantization is by roundoff, the expected bias is zero. In either case,
" the variance associated with the conversion (assuming a uniform input
probability across the class) is '

' 2 .

2 _ (APgp)™ -
qQ T 1z (48)

o

where ¢ 2 is the wvariance in dB2 and APdB is the class width in dB.

q
The variance oq2 of the operation normalized to the input variance,

_ °i2 = 31 de, is'shown in table 5 for a conversion range of 64 dBm.
Because the quantization variance is statistically independent of.
signal variance, the two are additive (lLee, 1964). Table 5 shows that
conversions, using more than five bits, result in qpantizationAvariahce
that is a negligible fraction of input variance. Smaller class inter-
vals may be needed for improved efficiency in averaging signals with
low signal-to-noise ratio (wOrks and Groginsky, 1970). Truncation

bias is a constant fraction of a clasévwidth and can be compensated

for in system calibration (Austin and Schaffner, 1970).

Table 5. Variance and Truncation Bias due to Quantization
for a Conversion Range of 64 dB.

CIASS | NUMBER | QUANTIZATION, | , TRUNCATION
WIDIH | BITS | VARIANCE, o ° | o 2/o, BIAS, €, -
@) | (V) (ap%) 4 e (@) °©

8 3 5.33 0.172 4

4 4 1.33 0.043 2

2 5 0.35 0.011 1

1 6 0.085 0.003 0.5
1/2 7 0.021 0.001 0.25
1/4 8 0.005 0.0002 0.125
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4.2 Range Averaging

The second operation is range averaging, which consists of a
linear average of the prescribed number (NR) of range samples, i.e.,

=+ V. SN CED
R i=1
If NR is restricted to a power of 2, the division in (49) can be
performed by a shift in bit weight of log2NR places to the left of the
binary point. In the WSR-57 integrator, Vk is truncated to seven bits
before time integration. The variance due to this operation (see

table 5) is 0.021 dB2 and the truncation error is 0.25 dB.

4.3 Time Averaging

The third operation, time averaging, requires implémentation of
the lowpass filter algorithm given by (33). The WSR-57 integrator's
algorithm is expanded to three operations expressed as

Von = BVin T Von-1) T BVom-1) - (50)

The multiplier constant B is (for the WSR-57) restricted to the values,

g=2" n=2,3 4,0r5. (51)
in? Bvo(n-i)j are performed by a shift in bit
weight and the subtraction [Vo(n-l) - BVo(n_l)] is performed in 2's
complement. .

In a processing loop of this type, the required minimum storage
word bit length is given by the sum of the input word bit length and
(-log28) bits (Works and Groginsky, 1970). Without truncation or
roundoff, the subtractor word length is the same. This is shown in
" table 6 for the word lenghts used in the WSR-57 integrator. The adder
- word must be truncated to the storage word_length (obviously) and this

 The multiplications [gV.
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Table 6. Comparative lLengths of Digital Words in the Time
Integrator Loop (WSR-57).

PARAMETER WORD | PARAMETER SYMBOL
_ ' 1 1 -
Input Word, 7 bits IIITIII. b Vin
' - A ]
Scaled Input, B = 2 5, : i i
12 bits 0000011, es BY.
]
R 1
Storage Word, 12 bits sssssss.ssss% L Voen-1)
2's Complement of Storage, P
17 bits 00000SS. ssssqsssss BV (n-1)
Subtractor Word, 17 bits DDDPDDD.DDDD%DDD%D Von-1) "BV (n-1)
Adder Word, 17 bits ARAAAAR.AAMARARARA | BV +(1-B)V, . 1y

Truncation Lines

may be done either (1) at the output of the subtractor such that the
length of the term (l-B)Vo(n 1) is equal to the storage word length,
or (2) at the output of the adder such that the term BV +(l B)Vo(n ~1)
is equal to the storage word, or (3) a_comblnatlon of both Since the
hardware has a fixed word length, truncation results in an amplitude
transfer of the loop that wvaries with the multiplier constant. For
example, if the truncation is made at the output of the subtractor,

the amplitude transfer, A, can be expressed as

s+l
2
A= —2F

B(2s+l

where s is the number of storage word bits. If the arithmetic word
length is maintained throughout the loop and the result truncated at
the output of the adder, the amplitude transfer is given by

(52)
-1) +1

1

A=1--—3

(53)
2
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and is independent of the multiplier constant so long as the minimum
storage word criterion is satisfied. The WSR-~57 integratort!s sub-
tractor word length is maintained for all multiplier constants except

27>, This results in an amplitude transfer (or bias) of

A = 0.9998 for 3 = 272, 273, 274 (54)

and

A = 0.991 for g - 27° . | (55)

In both cases, this bias is negligible and need not be considered in
the calibration procedures (sec. 5.1). '

A subtle source of nonnegligible bias is encountered if the
minimum storage word criterion is applied to words in the arithmetic
loop (fig. 9). To neglect this bias, the subtractor word length must
be longer than the storage word. The bias is a function of input word
length, 8, and also the sample variance at the input to the loop. If
sample variance is 31 B> (i.e., no range integration) and the sub-
tractor word is three or more bits longer than the storage word, the
bias can be shown to be 0.1 dB, or less for a 2 dB input class width.
For example, using the word lengths shown in table 6, this can be
shown to be less than 0.03 dB. o |

The standard deviation associated with the time averaging loop
derived from (48) is for a 12 bit (AP = 1/64 dB for a 64 dB input

power range) truncation,
¢ = 0.0045 dB . o | (56)
In conclusion,~fhe variance contpibuted by the time aVeraging'ibop'is

small compared with that variance due to range averaging truncation,
‘in turn small compared with the input signal variance.
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5, OUTPUT DATA PROPERTIES

5.1 Expected Value of Echo Power .
‘ Associated.With the Digital Mean

The mean calculated by the d1g1ta1 1ntegrator is the flrst moment
about the origin of its input samples, i.e., the mean of a series. of
samples composed of discrete values. These samples are quantized" '
values of a voltage, W, prcportional to the logarithm of echo powep
and have a probability density given in table 2. Also listed 1n
table 2 is the modal value of W, blog(cR P, ), its. mean blog(o 56cR P ),
which is 2.5 dB below the modal value; and its standard dev1at10n of
5.57 dB. The dlfference between the logarithm of the true mean power,
log ? » and the mean of log P, , log P, P,, is independent of the mean Pi
as is the standard deV1at10n of log w

The difference (bias) between P and log [log P ] is one factor
that must be considered in the a331gnment of expected power values to
the digital integrator estimates. Another factor that must be con-
sidered is thedbias introduced from quantization by truncation (sec. 4).
A third bijas is caused by the finite range of the A/Ddconversion; as
the true mean of the input distribution approaches tne conversion
range extremes, the difference between calculated and true mean in-
creases, This is due both to power truncation, i.e., saturation at
the upper limit, and to the 2zero weight associated with all inputs
below the conversion range lower limit. '

Still another factor is receiver transfer characteristic deviation
from a logarithmic response, which results in a modification of the
probability density, changes the difference between true and calculated
mean, and alters the input variance.

For input signals having mean values in a region of fhe system
transfer response, logarithmic from about 6 dB above to about 12 dB
below this mean, the exPected power value is 2.5 dB plus the trunca-
tion bias (table 5) below the true mean. The behavior near conversion
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range extremes depends on the system transfer characteristic and the
size of the quantization increment.

A calibration procedure, which relates the integrator output-
input mean power for‘the overall system, and the composite influence
of all the factors involved, consists of injecting