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ABSTRACT 

This memo describes digital integrator processing techniques 
to reduce the variance of precipitation echo power estimates. The 
statistical properties of precipitation echoes are reviewed and 
related to measurements of atmospheric and WSR-57 weather radar 
parameters. A digital integrator, successfully adapted to the WSR-57, 
can reduce power estimate variance below I dB without compromising 
the resolution of the WSR-57 radar. Although specific design param­
eters are tied to the WSR-57 parameters, sufficiently general cri­
teria are developed to permit design engineers to relate these 
results to other radars. \ve derive the statistical properties of 
echo power samples averaged both in range and time. Engineering and 
meteorological factors affecting the type of averaging technique 
employed (exponential weighted time average and linear range average) 
and averaging intervals selected are considered in detail. 

The expected value and variance associated with digital data 
processing due to the analog-to-digital conversion and the arithmetic 
operations are analyzed. The engineering requirements necessary to 
insure a minimal signal degradation due to these effects are given. 

It is shown that, for integrator parameters used, the variance 
contributed by the time averaging loop (exponential window function) 
is small compared with that variance due to range averaging trunca­
tion, in turn small compared with the input echo power variance. 
Relations are derived between integrator and radar parameters and 
minimum scale of resolved precipitation structure. Sample PPI dis­
plays of integrated echo returns from severe convective storms are 
presented. 

xiii 



HETEOROLOGICAL RADAR SIGNAL 
INTENSITY ESTIHATION* 

Dale Sirmans and R. J. Doviak 

1. INTRODUCT ION 

The capability of radar as an indirect meteorological probe has 

been recognized for some time and arises from the fact that the aver­

age power return from precipitation can be related to rainfall rate. 

The essentially continuous time and spatial rainfall rate data which 
the radar can provide over a large geographic area can be applied to 

hydrologic and water management studies as well as basic studies of 

weather phenomena. 

The widespread application of radar for this purpose has not been 
realized to date because the large inherent variance of the return 

signal results in an unacceptable uncertainty of the meteorological 

measurement. As a result most operational weather radars are used 

for surveillance and qualitative measurements. 
This report describes radar signal averaging using a digital 

processing technique whereby the mean return signal is estimated to 
the accuracy required for quantitative meteorological application. A 
digital processor usually requires less calibration and maintenance 

than an equivalent analog processor. The digital processing theory 

presented deals with both range and time (azimuthal) integration of 

echo samples to estimate reflectivity fields probed by a scanning 
radar beam. The interdependence between variance reduction of reflec­

tivity estimates, time required to achieve this reduction and spatial 

correlation of reflectivity is analyzed and a WSR-Si weather radar is 

used as an example to illustrate the trade-offs between these param­
eters. 

*Work on this project was partially supported by tne Federal Aviation 
Administration under contract DOT FA72-WAI-26S. 



2 • PROPERTIES OF METEOROLOGICAL RADAR ECHOES 

The statistical properties of radar echoes returned from precip­

itation determine the signal processing characteristics required to 

estimate average values (with prescribed standard deviation) of 
meteorological parameters, such as rainfall rate, reflectivity factor, 

etc. This section examines three commonly used receivers and deter­

mines their performance in reducing variance. We also formulate 

relations between velocity variance, radar parameters, and the sta­

tistical properties of averaged echo power. 

2.1 Echo ~Ja veform 

Consider an elemental VOlume, ~V, o~ randomly moving meteorolog­

ical targets being illuminated with continuous waves (cw) radio 

frequency (rf) power. The echo power averaged over an rf. period 

(e.g., =10- 9 sec), assumed short compared with the time required for 

the targets to move a distance equal to quarter of a wavelength, ~, 

may have instantaneous values as depicted in figure 1. The rate of 

echo power fluctuation increases as the rate of reshuffling the tar-

gets increases. 

.. 
Q: 

For the case of pulsed rf illumination where spatial 

pulse width h is large compared 

with range dimensions of ~V, the 

echo power will be samples of the 
W 
~ o a. 

o 
:x: 
M 

TIME,t,--

Figure 1. Illustration of instan­
taneous (averaged over an rf 
period) echo power versus time 
for an assumed isolated differ­
ential scatter volume illumin­
ated by cw radiation. 

2 

cw signal, figure 1, taken at times 
t

1
, t 2 , etc.,. spaced at intervals 

equal to the pulse repetition time 

(PRT). The echo pm'ler samples will 

have a time width nearly equal to 

the transmi t.ted pulse width T • 
P 

However, as is usual, when meteoro-

logical targets occupy a range 

larger .. than h = C'T, wherec is the 
. p 

light velocity, echo power is 

received continuously for a time 



interval twice that spent by the pulse to propagate through the target 

region. Pulsed rf radiation effectively samples a volume, V , of s 
meteorological targets having a range length equal to CT /2 and an p 
angular width nearly equal to the antenna 3 dB beam width.(Kerr, 1951; 

Nathanson, 1969). In section 3 we discuss both: (1) time averages 

of echo power samples associated· with single volumes of range length 

CTp/2 and (2) spatial or range averages of echo power (that is time 

averages, during a PRT, of power returned from contiguous volumes of 

range length CTp/2). We now consider the statistical properties of 

the instantaneous power and relate these to the averaging process. 

2.2 Statistical Properties of Receiver OUtput Signals 

Precipitation contained within the volume, Vs ' sampled by the 

radar pulse can be considered as a random array of discrete particles 

each acting as an isotropic scatterer. The power returned from the 

volume of random scatterers, or targets, is derived by assuming that 

the relative phase of each target echo is statistically independent of 

other echoes and distributed uniformly between 0 and 2n. Under this 

assumption, the average echo power is the sum of the power returned 

from the individual scatterers. Because echo power fluctuates about 

this sum, we need to average echo power samples. However, to obtain 

a large number of independent samples, the average must be made over 

time periods long compared with that required for particles to be 
displaced, relative to one another, a distance of A/4. The probabil­

ity densities associated with echo amplitude (i.e., voltage or cur­

rent) can be shown to be the solution of the two-dimensional Rayleigh 

"random walk" problem (M3.rshall and Hi tschfeld, 1953). 

The output Signal amplitude (voltage or current), W, of a radar 

receiver can have one of many functional dependencies upon the signal 

amplitude (e.g., voltage) applied to the receiver input port. Common 

receiver transfer functions are (1) square law, (2) linear, and 

(3) logarithmic. Por example, a square law receiver provides an·out­

put, W, that is proportional to the input voltage squared (i.e., echo 

power input Pi). The probability density of W can be derived from 

3 



the density of the input voltage envelope, V.(t), of the input 
~ 

signal s(t), 

s(t) = Vi(t) exp[j(wt + Ht»] ( 1) 

where w= rf angular frequency (radian/sec), i(t) = instantaneous 
phase (about reference phase wt) of input signal uniformly distributed 
over the interval -TT, TT. Table 1 presents some echo statistics at 
the receiver input and table 2, the statistics at the output for each 
of the three receiver transfer functions assuming V., has a Rayleigh 

~ 

distribution. Also, table 1 shows density functions for the In-phase, 
I, (real part of s(t» and ~adraturephase, Q, (imaginary part of 
s(t» components of the input phasor. These density functions have 
a normal distribution with a variance proportional to the average 

input power, Pi' contributed by Vs. 
as 

For a pulsed radar P. is defined 
~ 

.... 

where the N samples are obtained at the pulse repetition rate. s 
For a square law receiver, we note from table 2 that.the most 

(2) 

probable output amplitude is zero with mean and standard deviation 
proportional to the average (or mean) input power, P .• On the other 

. ~ 

hand, the logarithmic receiver·has ·an output voltage (or current) 
proportional to the log of the input mean power, but a standard 

deviation independent of input powe~. 
The meteorological parameter required is reflectivity/(propor­

tional to P.) from which liquid water content and rainfall rate can 
~ 

be estimated (Battan, 1959). The P. values of meteorological interest 
may easily span a range of 106 and· ~ften the choice of receiver type 
hinges upon this large dynamic range requirement. Because of the 
relative ease with which a logarithmic transfer function can be real­
ized over the range of P., logarithmic receivers are usually selected. 

~ 

However, the need for large dynamic range must be considered in 
relation to the estimate accuracy for each receiver type. Table 3 

shows the expected value and standard deviation (S.D.) of the pcwer 

4 
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· ... "._ .... _ .... -._. __ .... _------

Table 1. Meteorological Echo Stat~stics at Receiver Input 

PROBABILITY 
DENSITY DENSITY PROFILE 

Input Amplitude 

V. ::: (X2 + y2) 2/ -

~0 2V e-V. R.P. 
l. i . l.l. l. 

- ::--2 * R.P. ~ P. ::: V. /R. 
l. l. l. l. l. ~ V. 

l. 

2 - ...., 

) 1\' Input Quadrature e-X /RiPi >< 
L.....J 

Components VnR .p . 
~ (X or Y) ~ l. l. 
P.i 

0 X 
-- ._--- ---------

*R. is the receiver input resistance. 
l. 

MAX. PROBe MEAN 
MODAL VALUE VALUE 

VR,'P, nR.? . 
l. l. l. l. 

--r- 2 

0 0 

------------ -
L-_______ 

~ 

I 
STANDARD I 

DEVIATION I 

I 

1/2V 4-n)R. P. 
l. l. 

". 

~ l. l. 
~ 

--~ - ~. -



Table 2. Meteorological Echo Statistics at Receiver Output 

MAX. PROB. MEAN VALUE STD. DEV. 
RECEIVER TYPE PROB [W] DENSITY PROFILE MODAL VALUE -'W Ow 

r-I 
3 

-W/aR.p. 
L;..I . 

Square Law W = aV. 2 e ~ ~ ~ 0 a~Pi aR.P. 
~ aR.p. a: ~ ~ 

~ ~ 

l W 
.' 

0"1 ,-, 
22- 3: 

A 2we-W /a RiPi 
L-J at.! rrR.P. Linear vV = aV. ~ .707a R.P. a0 - I 

2 - ~ ~ 2' (4-rr:RiIi ' 
~ a R.P. ~ 

~ ~ 2 
~.~ 

: ) W' 

W = blOg(cvi
2

) tW eW/mb} ,-, 
exp mE - . 3: , m .-

Logari~hmic 
cRiPi ~~ blog(cR.P. ) blog (0. 56cR .15. .557b 

~ . ~ ~ ~ ~ 

_ 1 bmcR.P. ~ 
m - .tnlO ~ ~ ~ ; 

0- W 
--~---



Table 3. Co~parison of Expected Values and Standard Deviation of 
Estimates P. of Mean Input Power P .• . 1 1 

DYNAMIC RANGE EXPECTED VAllE S .D. OF INPU.T 
OF W FOR 106 OF INPUT POWER PavER ESTIMATES 

RECEIVER RANGE OF P. ESTIMATES (UNBIASED) 
1 II l-

E[P.] VAR2[~~] 
1 1 

Square Law 106 P. P.//1<. 
1 1 

Linear 103 TTP./4 
1 ' 

1.05 Pi //1<. 

Logarithmic 6 0.56 P. 1.28 P.//1<. 
J.. 1 

estimates, ~., of P. obtained by averages of k independent samples 
1 1 

from each receiver type. The table 3 results are derived in appen-

dix A. Note that only the square law receiver provides an unbiased 

estimate and has the smallest S.D. Since output averages for both the 

linear and logarithmic receiver result in a multiplicative bias of the 

estimates of P., we must multiply each estimate by the appropriate 
1 . 

factor to obtain Pi. These estimates have a S.D. (about the unbiased 

expected value P.) that is tabulated in the table. 
1 

Although the logarithmic receiver provides an estimate having 

the largest S.D. for a given number, k, of independent samples, the 

number required to achieve a reasonable accuracy is acceptable for 

most meteorological situations so that antenna scan rate and PRT 

requirements are not severely compromised. Hereafter we restrict our 

discussion of digital integrator performance to processing the loga­

rithmic receiver output. 

2.3 Statistical Dependence of the Samples 

The total number, Ns ' of samples obtained from the volum~ Vs is 
determined by the antenna beam width, scan rate, and PRT. However, 

since considerable correlation may exist from sample to sample, we 

must d~·LGnnine the equi val.ent number of independent samples, NI , in 

7 



order to estimate the variance rEduction indicated in table 3. The 

degree of correlation between samples is a function of radar parame­

ters, (e.g., wavelength, PRT, beam width, pulse width, etc.) and the 

meteorological status (e.g., degree of turbulence, shear, etc.) of ' 

the sample volume Vs. In the following, we relate these parameters 
to sample correlation in order to estimate NI • Although many of the 

results are well documented in the literature, they are listed here 

as a convenient reference because they form the basis for the design 

of the digital integrator. 

2.3.1 Statistical dependence related to input power spectrum 

If the estimate ~k of the output mean W is derived from a linear 
average of k indppendent samples, the output single sample estimate 

f) 

variance, cr . (table 2), is reduced by a factor of l/k (appendix A.2). w ..... 
That i'.:i 

(3) 

However if we have N samples in which correlation exists from sample s . 
to sample, estimate variance cr2(~) is not reduced in proportion to 

l/Ns • Instead for a stationary process and equi-spaced samples, the 

estimate variance for the Ns sample average is given by (Nathanson, 

1969) , 

N -1 
2 2 s 

a (~) = cr L: 
w m=-(N -1) 

s 

Ns-Iml 
--=-N~2- P (JI[' s) (4) 

s 

where p(mTs ) is the normalized autocorrelation of the samples, m is 

an integer, and Ts is the sample interval (PRT). The autocorrelatio~ 
can be expressed in terms of the power spectrum of the random output, 

and the parameters of this spectrum (in particular spectral width) 

can be related to atmospheric and radar system parameters. A 

Gaussian input spectrum can reasonably approximate spectra associated 

with precipitation echoes. To rigorously determine the autocorrela­

tion of the output W, we should transform this spectrum by the 

8 



receiver transfer function (nonlinear for a logarithmic and square 

law receiver) to derive the output correlation function needed in 

(4). However, the systenl parameters are more readily related to the 

power'spectrum of the input voltage V. and its corresponding auto-
~ 

correlation. To simplify the analyses, we restrict the following 

development to power spectra at the receiver input and assume that 
(' 

the deduced equivalent number of independent samples NI is equal to 

that available at a square law receiver output. For this case and 

a normal distribution of amplitude at the input, the output correla­

tion function is deriveq (Davenport and Root, 1958) and we assume 

that log and square law receiver NIfs are equal. 

Assuming the input power spectrum to be Gaussian 

( 5) 

The normalized autocorrelation function, derived by taking the Inverse 

Fourier Transform, is 

2 
R(T) = exp[- ~J • 

20' 
T 

The parameters O'T and O'f are related by 
_ 1 

crT - 2TIcr
f 

where the quantity O'f2 is the pre-detection spectrum variance. The 

post detection variance, i.e., the variance of the amplitude fluc~ 

tuation spectra that determines the correlation is 20'f2 (Lhermitte, 

1963). The pre-detection frequency spectrum variance is related to 
2 velocity variance of the meteorology, 0' ,and to the radar wave­

v 
length, A, by the Doppler equation. 

40' 2 __ v 
-:-r · A 

Substituting this and accounting for the detection process, we have 

the correlation 

9 

(6) 

( 7) 

(8) 



peT) = exp[- (9) 

Combining (3), (4), and (9), the equivalent nurr~er of independent 
samples, N1 , is expressed as 

N -1 
-1 s 

- (N1 ) = L: 
m=-(N -1) 

s 

(10) 

For correlated samples the difference between (10) and continuous 

integration is small (Lhermitte, 1963). Assuming correlated samples 

and that NSTS»l/af , , we can approximate the solution for the number 
of independent samples by 

(11) 

By setting NI equal to Ns' we find for sampling intervals 

(12) 

all Ns samples are practically ind~pendent. Decreasing Ts below 

this value would cause the samples to become correlated, which would 

result in NI decreasing (for fixed Ns ) and the averag~ng process 

becoming less efficient. 

2.4 Velocity Variance Relationships 

The velocity variance is a function both of radar system param­

~ters such as beam width, pulse width, wavelength, etc., and the 

meteorological parameters that describe the distribution of target 

(e.g., water drops) density and velocity within the sample volume 

(Sirmans, 1970). Relative radial motion of targets generates 

variance in the spectrum of input voltage. For example, turbulence 

produces random relative radial motion of drops within Vs. Wind 
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shear causes relative radial target motions as will differences in 

. fall speeds of various size drops. There is also a contribution to 

variance caused by the "a.pparent" relative motion of targets. As an 

example, targets moving at uniform speed across the radar sample 

volume Vs have different radial components of velocity because of 
the finite size of V. This effect, which is more pronounced as'V s s 
gets larger, is known as beam broadening and eXists for uniform 

target motion either perpendicular or parallel to the beam axis; 

however, the latter is much smaller than the former. In addition, 
since the sample volume is sweeping through space (due to antenna 

rotation), the radar does not receive echoes from identical targets 

on successive samples. This change in target from pulse to pulse 

results in an apparent fluctuation of radial motion. This is more 

clearly understood by referring to figure 1 and assuming that we have 

two contiguous elemental sample volumes I:Nl' IlV2 , whose return power 

is statistically independent. The time between independent samples 

is not only determined by the rate of reshuffling of targets within 

IlVl (or IlV2), but also by the time required for the antenna beam to 

move from IlVl to IlV2 • The power return will change more rapidly, 

independent of particle motion inside the sample volume, the faster 

the antenna is rotated. Thus the variance of the spectrum increases 

in proportion to the antenna angular velocity, 

We assume that each of the above variance producing mechanisms 

are independent of one another, 50 that the total velocity variance 
2 av can be considered as a sum of the variances contributed by each 

(Lee, 1964). That is, 

(13) 

where 
2 variance due to shear as = 
2 variance due to beam broadening O'b = 
2 variance due to antenna rotation ar = 
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2 variance due to different drop size fall speeds ad = 
2 = variance due to turbulence. at 

2 2 and 2 are related to the radar The components of ab ' ar ' ad 
and meteorological parameters (Nathanson, 1969) as 

2 (O.42Vo82sin~)2 (14) ab = 

2 (ad sine )2 (15) ad = o e 

2 etA '2 (16) a = (10.79
2

) r 

where Vo is the mean wind velocity at the center of Vs ' ~ is the 
azimuthal angle relative to wind direction at the center, and e2 is 
the two-way half-power bea~width in radians for an assumed cir­
cularly symmetric antenna pattern having a Gaussian distribution of 

power. The variance, a~o' is due to the spread in terminal velo.city 
of various size drops falling relative to the air contained in V~. 
Lhermitte (1963) has shown that for rain, a~o equals 1.0 (m/sec) and 
is nearly independent of drop size distribution and rainfall rate. 
The elevation angle, ge , is to beam center, and a is the angular 
velocity of the antenna in radians per second. It is easily shown 
that in terms of the usually specified one-way half-power beam 

. \ludth, 81 , 

, 

(17) 

The wind shear variance term is assumed to be composed of three 
independent contributions, i.e., 

(18) 

where each term is due to vertical, perpendicular, and radial shear, 
respectively.' The component of variance due to vertical shear is 
given by (Nathanson, 1969)· 

12 



(19) 

where K is the vertical shear of radial velocity (m/sec/m) and R (in v· 
m) is the range to the center of Vs. Equation (19) is only valid for 

small elevation angles, and for high elevation angles (19) must be 

replaced by 

2 The variance asp is produced by gradients in radial velocity 

(20) 

measured perpendicular to the vertical plane containing the beam axes. 

~is contribution follows directly from (19) and is 

(21) 

where Kp is the perpendicular shear. 

Finally, following the development of Sirmans (1970), the variance 
2 . 

O"sr J.S 

2 
asr = 48 (22) 

where ~ is the radial gradient of radial velocity (i.e., radial shear) 

and h is the spatial pulse length (CT). Combining (17) through (22), 
we obtain the total variance due to shear, 

(23) 

The variance O"t2 due to turbulence is somewhat more difficult to 
model. Assuming that turbulence is a conglomeration of eddies whose 

mean diameter is much smaller than the smallest dimension of Vs ' and 
that an average eddy is a solidly rotating, cylindrical mass of air 

having a mean angular velocity, we' and an axis perpendicular to the 
beam axis, Sirmans (1970) has shown that the variance is given approxi­
mately by 

13 



(24) 

where ro is the average radius of the eddies. 

2.5 Estimated Variance Values for a Weather Radar Example 

In this section estimated values of the variance components are 

compared to determine if any terms can be neglected in practice. For 
sake of example, the WSR-57 radar parameters are taken as representa­
tive of weather radar systems and used to determine the design criteria 
for the digital integrator discussed in section 3. 

2.5.1 Antenna rotation 

The WSR-57 radar operates at a wavelength near 10 cm, and the 
antenna rotates at an angular rate of 3 rpm. At this angular velocity, 
the variance due to antenna rotation for the one-way 3 db beam width 
of 2.20 is determined by substituting into (16). 

-1 a 2 ~ 3(2n) x 10 x 57.3 _ 10-4 2 -2 
r . 10.7 x 60 x .71 x 2.2 - m sec , 

which can be considered negligible compared with variance estimates 
that follow. 

2.5.2 Fall velocity variance 

(25) 

In meteorological radar measurements of parameters such.as rain­
fall rate, where elevation angles are typically below 100, the variance 
due to the distribution of fall speeds is, upon substitution into (15), 

(26) 

and can be considered negligible. 
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2.5.3 Beam broadening 

-1 Assuming S = n/2 and a mean wind speed Vo of .15 m sec (e.g., 
approximately 30 kts) and a half power (one-way) beam width of 2.2°, 

we obtain from (14), 

(27) 

2.5.4 Shear 

-3 -1 A value of vertical shear K , equal to 4 x 10 sec ,has been . v 
suggested by Nathanson as appropriate for arbitrarily oriented radars. 

In severe storms, Crawford and Brown (1972) have found vertical shear 
-2 -1 values as large as 3 x 10 sec and horizontal shears as large as 

-2 -1 . 
10 sec • However, for illustration, we assume Nathanson's value as 

more typical of average vertical shear in precipitation regions. Hor­
izontal shear usually is less than vertical shear, especially in 

stratiform situations, and for sake of Simplifying the estimates, we 
neglect 0

2 as well as 0
2 in comparison with 0

2 • Thus we obtain by sp sr sv 
substituting into (23), the estimate of variance due to shear (for 

Se small), 

(28) 

where R is the range in meters. By comparing (28) with (25) through 
(~7), except in regions close (i.e., R < 10 km) to the radar Site, 

we find the contribution to variance from shear predominates. 

2.5.5 Turbulence 

Variance due to turbulence is difficult to'estimate and varies 

considerably with the type of precipitation being viewed by the radar. 

Preliminary data obtained at NSSL indicate that Ot2 may vary from an 
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2 -2 2 -2 average of 4 m sec for a convective system to about 1 m sec for 
2 -2 stratiform rain. We assume a value of 2 m sec • 

2.5.6 Composite variance 

2 2 2 
Using the above estimates and neglecting ar ' ad ' ab ' we obtain 

the following reduced formula for a , v 

(29) 

which gives the velocity standard deviation as a function of range R 

(in m) for the WSR-57.weather radar parameters. Equation (29) is 

plotted in figure 2. Shown for comparison is the velocity standard 

deviation computed for NSSL's WDS-71 Doppler radar, which has a one­

way beam width of 0.81° and also operates at a wavelength of about 

10 cm. 

2.6 Number of Equivalent Independent "Samples 

Results of section 2.3 and 2.4 provide the means for estimating 

the number of independent samples that may be obtained for given 
10 

8 

E 4 

~ 
2 

00 40 80 120 160 200 240 280 320 
RADIAL RANGE, R,Km 

Figure 2. Expected velocity spec­
trumstanctard deviation, a , for 
theWSR-57 and WDS-71 rada¥ 
systems. The radar wavelength 
is 10 cm and a vertical shear 
coeff~cient, Kv ' -of 4(10-3) sec-l 
is assumed. 
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meteorological and radar parame­

ters. Shorter PRT's (which provide 

more samples per unit time to 

estimate mean input power) result 

in samples having increased cor­

relation, and estimate variance, 

VAR[~.], may not be reduced in 
J. 

proportion to the inverse number 

of samples processed. 



2.6.1 Independent samples due to spectrum va~iance 

The ratio of the equivalent number, N1 , of independent samples 

to the number, Ns ' of total samples collected versus the standard 

deviation of the velocity spectrum, 0 , is· shown in figure 3 with the v 
sampling interval, Ts' as a parameter. This is a graph of (10). 

2.6.2 Independent samples due to sample volume replenishment 

Acquisition of a sample series while the antenna is rotating 
results in continuous alteration in illumination of the differential 
scatter volumes contained within the spherical shell of width CTp/2. 

Because the echoes from differential scatter volumes, 6V, are statis­
tically independent, we can apply the methods outlined in appendix C 
to show that the echoes from the 6V's for two positions of the beam 

illuminating a unifo~ reflectivity field are correlated due to a 

finite two-way beam pattern. Al-

though.appendix C derives range 

sample correlation due to finite 

pulse width (i.e., range samples 

may have spaCing less than a pulse 

width), the solution for angular 
samples is easily executed by ex­
changing differential range 

volumes with differential angular 
volumes and pulse shape with two­

way beam pattern. The correlation 

of angular samples is thus seen to 

be the correlation between the 

two-way pattern lagged by the 

angular sample interval. A good 

approximation for the antenna 

pattern is obtained by assuming a 

uniform illumination of a circular 
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aperture (Silver, 1949). Figure 4 shows the autocorrelation coeffi­

cient for adjacent samples for this pattern versus the angular sample 

interval normalized to the one-way half-power beam width. For example, 

the correlation coefficient between echo samples for the same range 

but for different beam positions of the WSR-57 operating with an antenna 
velocity of 3 rpm will be approximately 0.98. At a wavelength of 10 cm 
and an assumed Gaussian correlation function, this effect would be 

equivalent for achieving statistical independence to a Doppler variance 
of approximately 0.18 m2 sec-2• 

2.7 Summary 

The velocity variance has been related to the radar character­

istics and to the meteorological parameters (e.g., shear, turbulence, 

z 
o 
~0.4 
C::( 
-I 
W 
a:: a:: 
0°·2 
u 

Ol....---"---_.a.-.--..;;==-____ ~ ° 0.5 1.0 1.5 2.0 
SAMPLE SPACING IN ONE WAY 
HALF POWER BEAM WIDTHS. 

9/9. 

Figure 4. Correlation coefficient 
versus azimuthal sample spacing 
in one-way half-power beam width 
for a uniformly illuminated cir­
cular aperture and anuncorrela­
ted, uniform reflectivity field • 
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etc.) of the sample volume. . The 

radar wavelength and PRT's have 

been shown to control sample cor­

relation, antenna beam width, and 

shear control velocity variance, 

and, along with the transmitter 
pulse length and dwell time, set 

bounds on the output data in terms 

of both resolution and accuracy of 

reflectivity estimates. If any 
options are available, these param­

eters should be adjusted to opti­

mize the processing scheme in terms 

of the expected velocity variance. 
·A decrease of wavelength will 

decrease the time to independence 

for a given velocity variance, but 
in general precipitation attenu­
ating the incident power at wave­

lengths of less than 10 cm makes 



quantitative measurements difficult. The PRT, dictated usually by 
the unambiguous range coverage required for the expected meteorological 
conditions (i.e., size or range depth of storm) and by average power 
or duty cycle considerations, is the data sampling rate that determines 
the -correlation of the input samples. From figures 2 and 3', we see 
that for a 10-cm system with a beam width between 1 0 and 30 , the PRT, 
which provides a high rate of practically.independent samples, is 
between 5 msec and 10 msec. Thus the PRT's significantly shorter than 
this cause the input data to be redundant. 

The ant~nna beam width controls sample correlation by its rela­
tion (e.g., (13) and (23» to velocity variance. A more important 
property of beam width is the minimum azimuthal and elevation scale 

. resolved by the radar. Therefore, beam width is selected on the basis 
of the minimum scale of the weather to be resolved and not on sample 
correlation. Estimates of the lower limits of the precipitation scale, 
based mainly on·h1gh density rainfall gauges, are about 300 to 500 m 
in the horizontal plane (Nathanson, 1969). Estimates of the lower 
limit in the vertical are about 3000.;to 4000 m. Although it is imprac­
tical usually to resolve the horizontal scales at any appreciable 
range, the beam width should be small compared with the reflectivity 
scales within the storm. 

The desired reduction in variance of mean power estimates quite 
possibly requi~s a dwell time in excess of that available by rapid 
scanning of a large volume of space. There are other means to increase 
the number of independent samples if dwell time is fixed by beam's 
angular rotation, and these have been discussed by Marshall and Hitsch­
feld (1953). One technique that is practical to implement, especially 
in radar systems containing Klystron amplifiers, is to change fre­
quency from pulse to pulse (freq~ency agility). Marshall and Hitsch­
feld predicted and Nathanson verified that a radio frequency change 
between consecutive pulses by an amount equal to Tp-l would decor­
relate the samples. Wallace (1953) has shown that an increased number 
of independent samples can be obtained (at the sacrifice in spatial 
resolution) by averaging over several spatial sample volumes. These 
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samples can be selected in range or in angular increments, or a com­

bination of both. In the next section we discuss spatial (range) and 

time averaging techniques. 

3. AVERAGING TECHNIQUES 

2 The large inherent variance of precipitation echoes (31 dB at 

the output of a logarithmic receiver) requires averaging to provide 

an estimate of the mean signal intensity with the accuracy needed for 

meteorological interpretation. An estimate of return power having a 
standard deviation of about 1 dB would be adequate for usual applica­

tions. Thus the mean estimate should comprise, in the least, 31 

independent samples. Reduction of estimate variance can be achieved 

through range averaging--an average taken over several sample volumes 

in range--or time averagi~g--an average taken over several pulses 

returned from the same sample volume--or a combination of these two 
methods. A combination technique is usually more desirable, since it 

reduces the number of samples provided by either method alone and 
affords some flexibility in selecting the dimensions of the volume ovel 
which averaging is performed (i.e., averaging volume). The averaging 

volume has range dimension determined by the number of contiguous rangE 
samples of length CTp/2 used in range averaging and an angular width 
determined by the antenna beam width, the integration time (Le., num­

ber of PRT intervals spanned in time averaging), and antenna ar.gu~ar 

velocity. Strictly speaking, range averaging is a time average of 

return power within one PRT; however, since its time scale corresponds 

to the range of targets, we define it as a range average. 

The choice of sample window function (i.e., rectangular, expo­

nential, etc.) used for weighting the samples depends upon whether 
range or time averaging is being performed and upon the desired format 

of the output. An exponentially weighted window is practical to 

implement and provides a continuous estimate of the mean value (Gold 
and Rader, 1969). Continuous herb implies that the mean output is 

updated with each new sample, and the output at any time is an average 
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of previous inputs weighted by the window function. Although a scan­

ning rectangular windCM provides a continuous output, it requires con­

siderable data storage and thus its cost usually is prohibitive. 

Averages of time .samples in a block can reduce the cost considerably, 

even though the integration is not strictly continuous (i.~., the 
rectangular window shifts in time steps equal to time required to 

collect the sample block) (Hall et al. ,1963) • This technique is 

implemented where output averages can be recorded or viewed in discrete 

steps. The WDS-71 Digital Integrator uses this technique. 
Even though the exponential window is advantageous for display and, 

cost, it may not be suitable for range averaging. Reflectivity gra­

dients as large as 20 dB/km are not uncommon, and an exponential range 
window having a r~nge "time constant" cTl may give undesirably large 
contributions in the interval cTl from large reflectivity regions out­

sidecTl • These contributions arise from the existence of the expo­
nential tail that weights these large reflectivity regions. 

A rectangular window only weights the contribution within the 

window, and since discreteness in range may not be bothersome for 

display, a rectangular range window is used in the digital integrator 

(fig. 5) described in section 3.2. An exponential window is used for 

time averages. 
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Converter 
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Range Averaging Interval 

Integration of Integration of Time Digital to 
Range Samples ~ Samples Analog 
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Figure 5. Digital integrator. 
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The theory of range and time averaging for the digital integrator 
is given in sections 3.1 and 3.2, respectively. The receiver is 
assumed to be logarithmic, and its output applied to the digital inte­
grator. Sample correlation and receiver noise influence on integrator 
performance are analyzed, and relations between integrator, radar, and 
meteorological parameters are derived. Much of the theory in the 
following sections applies equally to analog integrators.Digitiza~ion 
and quantization influence on the accuracy of integration is discussed 
in section 4. 

3.1 Range Averaging 

The return signal is averaged over a range interval chosen by 
consideration of the radar's beam width, range at which measurements 
are to be taken, type of meteorological situations, etc. Range aver­
aging the parameter log P. introduces a systematic bias (derived in 

. 1 

appendix B) of the estimate caused by reflectivity gradients, which 
will limit the maximum range interval useful for averaging (Rogers, 
1971) • Nevertheless, we have a reasonable latitude available in 
choosing the range interval • 

. The incremental spacing, TS' between samples multiplied by the 
number of range samples, NR, averaged gives the range averaging in­
terval, ~R. The sampling increment is chosen by considerations of the 
autocorrelation of the consecutive range samples of return signal plus 
receiver noise. The number of samples in the range interval is 
restricted to a pOwer of two to facilitate the digital averaging proc-
esse 

3.1.1 Range correlation of echo samples 

The echo sample autocorrelation versus range (fig. 6) is derived 
in appendix C for an assumed rectangular transmitted pulse, wide band 
receiver, and uniform reflectivity field. For these conditions, the 
normalized autocorrelation of echo power is (C. 9) 
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PS(T) = 1.-
ITs I -Tp 

o < IT I < T 
S P 

= 0 otherwise (30) 

where TS = range sampling increment or lag time. Sampling the echo at 
time. intervals less than the transmitter pulse width results in a 

successive sample correlation. Nevertheless, usually it is desirable 
to sample at an increment smaller than the pulse width to reduce the 
variance contributed by receiver noise. Although this increment re­
sults in correlated signal samples and data redundancy, it will not 
appreciably decrease the overall efficiency or increase integrator 

cost since the range averaging circuits, being cammon to all locations, 
require no pulse-to-pulse storage. If TS is small compared with Tp ' 
we will achieve an estimate variance smaller for the case of noise 
alone than for signal alone as disc~ssed in the following section. 

3.1.2 Range correlation of noise samples 

Quite often the bandwidth of the receiver may be about 2 to 3 
times the reciprocal of the transmitter pulse width, and since the 
noise statistics reflect this bandwidth, the noise samples will not be 

correlated as tightly as the 
return signal. 

If the receiver frequency 
response is approximated with a 
Gaussian function, the noise auto­
correlation is 

2 = exp[- 7.6l(Ts B) ] (31) 

where B = 3 dB bandwidth of the 
receiver. Representative values 
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of PN and p s are given in table 4 for a receiver bandwidth of two 
and three times the reciprocal of the transmitter pulse width. The 
noise samples become significantly correlated for a sampling increment 

receiver bandwidth product less than about 0.5. Thus sampling incre­
ments much less than O.s/B will not result in significant variance 
reduction. This sampling increment (i.e., O.s/B) suggests a range 

sample increment much smaller than that based solely upon pulse width 
and signal correlation. 

3.1.3 Variance reduction due to range averaging 

Averages containing correlated samples (i.e., case of 

IT I/T < 1) have an estimate variance, cr2«P.», that depends not s p 1 

only on the number, NR, of samples, but also on sample correlation. 

The estimate variance in ~~is case is given by (4), 

cr2«Pi» NR-l NR-\ml 
---- = -1:... = L: P (mT s) , (32) 

cri 2 NIR m=-(NR-l) NR 2 

Table 4. Autocorrelation of Noise and Signal Versus the Sampling 
Increment-Receiver Bandwidth Product. 

Autocorrelation Autocorrelation 
of Noise of Signal, Ps 

TsB PN T = 
P 

2/B T = 3/B 
P 

0.1 0.931 0.95 0.967 

0.2 0.750 0.90 0.933 

0.4 0.317 0.80 0.867 

0.5 0.149 0.75 0.834 

0.6 0.075 0.70 0.800 

0.8 0.010 0.60 0.733 

1.0 0.0008 0.50 0.667 
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where 
<P.> = spatially averaged estimate 

~ 

2 variance of input to the averager (i.e. , 31 dB2) °i = 

NIR = number of independent range samples 

NR = number of range samples 

p(mTS) = autocorrelation of the samples. 
The number of independent range samples, N1R, obtained for various 
values of TS/Tp is given in figure 7. This number neglects receiver 
noise and applies without correction (calculated standard error within 
10 percent of true standard error) for signal-to-noise ratios, SiN, 
greater than about 10 dB. For signal levels below this value, the 
Signal plus noise estimate variance, 0

2+ «P.», needs to be corrected s n J. 
as shown in figure 8. This correction comes from weighting the estimate 
variance, 0 2 «P.», for signal alone and noise variance [i.e., s ~ 

0n2 «Pi»] by their respective power weights, dividing each by their 
respective independent sample number (i.e., NIR and NR, respectively), 
and summing the result. The curve in figure 8 assumes N1R/NR « SIN 
and SIN ~ 1. Because noise samples 
are uncorrelated, the number of 
independent range samples increases 
as SiN decreases. 

3.2 Time Averaging 

The time or pulse-to-pulse 
averaging of the range averaged 
Signal is accomplished by a digital 
la-rpass filter. The transfer 
characteristic of this network 
results in an exponential "time 

I window" and a continuous mean value 
, estimate. A given estimate of 

course depends on the order of a 
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given input series; but since the 
order is random, the output esti­
mate is equivalent to a linear 
averaging over a period determined 

by the multiplier constant (~) of 

the digital network. The elec­

tronic circuitry required to 

implement the operation is simpli­

fied considerably by limiting the 

multiplier constant to values Figure 8. 2Ratio of signal vari­
ance, 0 ,to the2signal plus 
noise v~riance, 0s+n' versus 
the signal-to-noise power 
ratio, SiN. 

-n .. given by 2 where n ~s an ~nteger. ., 
I 

In this section we discuss ) 

the theory of the digital lowpass 

filter and compute the statistics of its output. 

3.2.1 Digital lowpass filter theory 

The following analyses shows that the algorithm describing the 

digital lowpass filter (appendix D discusses filter properties) pro­
vides an unbiased estimate of the input mean (i.e., mean output of 

range averager). Even though the lowpass filter acts to average an 

infinite number of possibly independent samples, estimate varianc~ will 

be finite because sample amplitudes are exponentially weighted. Hence, 
to obtain estimate variance, we must determine the equivalent number 

of independent samples, ~i' yielded by the filter. The variance re­
duction factor (i.e., Ne ) is derived as a function of ~ for statis­
tically independent input samples. This is expanded in section 5 to 

include dependent input samples. To simplifY the analyses, we con­

sider the output from one range averaging interval which occurs at 
periodic intervals equal to a PRT. 

The signal flow diagram of the time integrator is depicted in 

figure 9. The algorithm describing the time integrator is 
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where 

Vin the th input sample /3Vin VO,n = n 
+ 

(output of the range 
averaging circuit) 

Vo(n-l) = the output after 
(n-l) samples 

13 = 2-n where n = 1, Figure 9. Digital time integrator 
2, "3, flow diagram." ... • 

Iterating (33) and assuming the boundary value, Voo = 0 for Vin = ViO ' 
the output Von may be expressed exclusively in terms of the input as 

n-l 
m 

Von = 13 t (1 - 13) Vi (n-m) • (34) 
m=O 

When input samples are drawn from a population having a mean value V., 
~ 

it is clear that 

n-l 
V = 13" V. I: (1 - S)m • 

On J. " m=O 

As (35) approaches steady state (i.e., n - 00), the sum becomes an 
infinite geometric progression with first term value of unity and a 
common ratio of (1 - 13). In the limit the output, Vo ' is 

(35) 

thus, the output is the population mean and the algorithm provides an 
unbiased estimate. 

2 The variance, 0on' of an n sample estimate is expressed as 

2 _ 7 -)2 
°on - on - (Von (36) 

2"" The second moment, Von' is obtained by averaging the square of (35). 

That" is 
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~ n-l n-l 
-V-L = Q2" 2: (l_Q)m (1 Q)q V v (37) 

~ ~ ~ -~ i(n-m) i(n-q)· on m=O q=O 

The expected value V V is given by (Burington and May, i(n-m) i(n-q) 
1953) 

where 
r = n-m; s = n-q 

Or s , 

= covariance of Vr Vs . 

= correlation coefficient 

= standard deviation of Vir' Vis 

(38) 

Vr s , 
Equation (38) may be 
dependent samples (a 
figs. 2 and 3) 

= first moment about the origin of Vr , Vs. 

simplified by noting that for statistically in­
good assumption for the WSR-57 parameters, see 

= 1 

p = 0 rs 

for r = s 

for r =! s 

and that or = 0 = 0., the standard deviation of the input, and s ~. 

furthermore Vr = Vs is equal to the mean of the sample population Vi" 
Substitution into (38) results in 

V V = ,.. 2 + V 2 
i(n-m) i(n-q) vi i for r = s 

(39) 

v V = V. 2 
i(n-m) i(n-q) ~ 

for r =! s • 

Upon substituting the above into (37), we obtain 

(40) 
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where we have used r = s = p. Expanding the first term of (40) into 
the sum of two series and combining the series containing V. 2 with the J. . 

second term of (40), the moment expansion I'educes to 

(41} 

(- 2 . The mean squared value, Von)' J.S obtained from squaring (35) 

2 _ 2 n-l n-l 
= ~ V. ~ (l_~)m ~ (l-~)q. 

J. m=O p=0 
(42) 

Substituting (42) and (41) into (36), we obtain 

n-l 
2 = Q2 .2 ~ (1_Q)2p (j on IJ (j J. IJ 

p=0 
(43r 

In the steady state (43) can be expressed as a sum of an infinite geo-
2 metric,progression. That is, the output variance (jo is given by 

Therefore 

n-l ~2(j.2 
(j 2 = lim (j2 = ~2 (ji 2 lim ~ (1_~)2p = --..;:J.~~2- • 

o n-+03 on n-+03 p=0 [l-(l-~) ] 

(j 2 
o _ LJ- 1 
~ - 2-~ - N · 

i e 

(44) 

(45) 

Equation (45) relates the input and output variances and defines the 
equivalent number, Ne , of independent time samples for a given multi­
piier constant ~. 

3.2.2 Equivalent time constant and correlation of output estimates 

The time integrator response results in an exponential correlation 
of the successive output averages (i.e., at intervals equal to the PRT) 
for a given range averaging interval. As shown in appendix D, the 
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equivalent time constant, T , of the digital integrator, approximated e 
by the first two terms of (D.7) is 

T 
T = 2-13 s (46) 
e !3 '"2 

where Ts is the time interval (PRT) between input samples. Thenor­
malized autocorrelation of the output is given by (D.16) 

R (n) 
o 

T 
= exp [- T] . 

e 
(47) 

Thus samples of the output at time intervals, T, less than about 3Te 
result in a redundancy of output data. 

4. VARIANCE AND BIAS DUE TO qUANTIZATION 

Digital processing introduces a variance and, in some instances, 
an error (bias) due to uncertainty associated with the digital number. 
Here we determine the bias magnitude and estimate variance in order to 
specify the digital word length and processing teclmique needed t.o 
achieve the required estimate accuracy. The digital processing used 
in the digital integrator can be divided into three steps: (1) analog 
to digital conversion, (2) range averaging, .and (3) time averaging. 
The expected estimate value (i.e., bias) and variance resulting from 
these three operations in cascade is derived. 

4.1 Analog-to-Digital Conversion 

The first operation is the analog~to-digital (A/D) conversion. 
The conversion should span a received power range of about 60 dB, and 
assuming a log receiver response and linear quantization, the digital 
number will represent equal increments of log P. Por quantization by 
truncation, the expected bias associated with this conversion is 
one-half of a quantization step (Gold and Rader~ 1969). Truncation 

\ results in a systematic underestimate of true value. If the 
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quantization is by roundoff, the expected bias is zero. In either case, 
the variance associated with the conversion (assuming a uniform input 

p.robabilityacross the class) is 

12 (48) 

where 2 is the variance in dB2 and ~PdB is the class width in dB. O'q 2 
The variance O'q of the operation normalized to the input variance, 
0'.2 = 31 dB2, is shown in table 5 fora conversion range of 64 dBm. 
~ 

Because the quantization variance is statistically independent of 
signal variance, the two are additive (Lee, 1964). Table 5 shows that 
conversions, using more than five bits, result in quantization variance 
that is a· negligible fraction of input variance. Smaller class inter­
vals may be needed for improved efficiency in averaging signals with 
low signal-to-noise ratio (Works and Groginsky, 1970). Truncation 
bias is a constant fraction of a class width and can be compensated 
for in system calibration (Austin and Schaffner, 1970). 

Table 5. Variance and Truncation Bias due to Quantization 
for a Conversion Range of 64 dB. 

CLASS NUMBER QUA.NTIZATION2 2 2 TRUNCATION 
WIDTH BITS VARIANC~, 0' O'q /O'i BIAS, €t 

(dB) (Nb) (dB) q (dB) 

8 3 5.33 0.172 4 

4 4 1.33 0.043 2 

2 5 0.35 0.011 1 

1 6 0.085 0.003 0.5 

1/2 7 0.021 0.001 0.25 

1/4 8 0.005 0.0002 0.125 
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4.2 Range Averaging 

The second operation is range averaging, which consists of a 

linear average of the prescribed number (NR) of range samples, i.e., 

NR 
- 1 VR = NI E V.. (49) 

R i=l ~ 

If NR is restricted to a power of 2, the division in (49) can be 
performed by a shift in bit weight of log2NR places to the left of the 

binary point. In the W8R-57 integrator, VR is truncated to seven bits 

before time integration. The variance due to this operation (see 

table 5) is 0.021 dB2 and the truncation error is 0.25 dB. 

4.3 Time Averaging 

The third operation, time averaging, requires implementation of 
the lowpass filter algorithm given by (33). The W8R-57 integrator's 
algorithm is expanded to three operations expressed as 

v = ~V + V - ~V • on in o(n-l) o(n-l) 
(50) 

The multiplier constant ~ is (for the W8R-57) restricted to the values, 

n = 2, 3, 4, or 5 • (51) 

The multiplications [~V. , ~V ( 1)] are performed by a shift in bit 
~n 0 n-

weight and the subtraction [Vo(n-l) - ~Vo(n-l)] is performed in 2's 
complement. 

In a processing loop of this type, the required minimum storage 

word bit length is given by the sum of the input word bit length and 
(-log2~) bits (Works and Groginsky, 1970). Without truncation or 

~oundoff, the subtractor word ~ength is the same. This is shewn in 

table 6 for the word lenghts used in the W8R-57 integrator! The adder 

word must be truncated to the storage word length (obviously) and this 
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Table 6. Comparative Lengths of Digital Words in the Time 
Integrator Loop (WSR-57). 

PARAMETER WORD PARAMETER SYMBOL 
1 

Input Word, 7 bits 1111111. 1 Vin 1 
1 

-5 .1 

Scaled Input, 13 = 2 , 1 
I 

12 bits OOOOOII.IIII~ I3V. 
I J.n 

Storage Word, 12 bits SSSSSSS.ssssEI Vo(n-l) 1 
1 

2' s Complement of Storage,· I 
I 

17 bits OOOOOSS.SSSS$SS~S -I3Vo(n-l) 
I I 

Subtractor Word, 17 bits DDDDDDD.DDDD~DDDD.D Vo(n-l)-I3Vo(n-l) 
I I 

Adder Word, 17 bits AAAAAAA.~ I3Vi +(l-I3)Vo(n_l) 
I I 

I I 
Truncation Lines 

may be done either (1) at the output of the subtractor such that the 

length of the term (l-S)Vo(n_l) is equal to the storage word length, 
or (2) at the output of the adder such that the term I3V. +(l-S)V ( 1) . J.n ·0 n-
is equal to the storage wor~ or (3) a .combination of both. Since the 
hardware has a fixed word length, truncation results in an amplitude 
transfer of the loop that varies with the multiplier constant. For 
example, if the truncation is made at the output of the subtractor, 
the amplitude transfer, A, can be expressed as 

A = 13 2
s+1 

13(2s +1 - 1) + 1 
(52) 

where s is the number of storage word bits. If the arithmetic word 
length is maintained throughout the loop and the result truncated at 
the output of the adder, the amplitude transfer is given by 

1 (53) A = 1 - 2s+1 
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and is independent of the multiplier constant so long as the minimum 

storage word criterion is satisfied. The WSR-57 integrator 1 s sub­

tractor word length is maintained for all multiplier constants except 
-5 2 • This results in an amplitude transfer (or bias) of 

A =: 0.9998 -2 -3 -4 for p = 2 ,2 ,2 (54 ) 

and 

A = 0.9961 for S - 2-5 . (55) 

In both cases, this bias is negligible and need not be considered in 

the calibration procedures (sec. 5.1). 

A subtle source of nonnegligible bias is encountered if the 

minimum storage word criterion is applied to \'lords in the arithmetic 

loop (fig. 9). To neglect this bias, the subtractor word length must 

be longer than the storage word. The bias is a function of input word 

length, \3, and also the sample variance at the input to the loop. If 

sample variance is 31 dB2 
(i.e., no range integration) and the sub­

tractor word is three or more bits longer than the storage word, the 

bias can be shown to be 0.1 dB, or less for a 2 dB input class width. 

For example, USing the word lengths shown in table 6, this can be 

shmtn to be less than 0.03 dB. 

The standard deviation associated !Ilith the time averaging loop 

derived from (48) is for a 12 bit (6P = 1/64 dB for a 64 dB input 

power range) truncation, 

cr =: 0.0045 dB . (56 ) 

In conclusion,the variance contributed by the time averaging loop is 

small compared ""ith that variance due to range averaging truncation, 

. in turn small compared with theiriput Signal variance. 
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5. OUTPUT· DATA PROPER'I'IES 

541 Expected Value of Echo Power 
Associated with the Digital Mean 

The mean calculated by the digital integrator is th~ first m~nt 

about the origin of its input samples, i.e., the mean· of a series o~ 

samples composed of discrete values. These samples are quantized 

values of a voltage, W, proportional to the logarithm of echo power 

and have a probability density given in table 2. Also listed in 

table 2 is the modal.value of W, blog(cR.P.)j its mean blog(O.56cR.P.), " J.J. J.J., 
which is 2.5 dB b~low the modal valuej and its standard deviation of 

. . -' . 

5.57 dB. The difference between the logarithm of the true mean power, 

log P., and the mean of log P., log P., is independent of the 'mean PJ.. J. J. J. 
as is the standard deviation of log W. 

The difference (bias) between P. and log-1[109 P.] is one factor J. J. 
that must be considered in the assignment of expected power values to 

the digital integrator estimates. Another factor that must be con­

sidered is the bias introduced from quantization by truncation (sec. 4). 

A third bias is caused by the finite range of the AID conversionj as 

the true mean of the input distribution approaches the conversion 

range extremes, the difference between calculated and true mean in­

creases. This is due both to power truncation, i.e., saturation at 
the upper limit, and to the zero weight associated with all inputs 

below the conversion range lower limit. I 
i 
b Still another factor is receiver transfer characteristic deviation 

from a logarithmic response, which results in a modification of the 

probability density, changes the difference between true and calculated 
/J mean, and alters the input variance. 

J For input Signals having mean values in a region of the system 

transfer response, logarithmic from about 6 dB above to about 12 dB 

below this mean, the expected power value is 2.5 dB plus the trunca­

tion bias (table 5) below the true mean. The behavior near conversion 

35 



range extremes depends on the system transfer characteristic and the 
size of the quantization increment. 

A calibration procedure, which relates the integrator output­
input mean power for the overall system, and the composite influence 
of all the factors involved, consists of injecting a known input power 
(having a standard deviation small compared with the quantization in­
terval) to determine the boundary or threshold levels, in units of 
10 log Pi' of the digital classes. These experimentally determined 
boundary values are used as the limits for an incremental integration 
of the theoretical probability density of log Pi. The integral of 
probability density over the class limits is the relative frequency of 
occurrence of that class. The sum of the p~oducts (relative occurrence 
frequency times the class weight) is the digital mean. That is; 

where 

M 

m 

M t m+l 
X = I; m J Prob{ log P.} d (log P.) , ( 57) 

m=O t J. J. 
m 

= digital output mean 

= number of digital classes in the AID conversion 
(M ~ 2Nb_l) 

= lower boundary of class m (in dB) 

= -<10 

= class weight (i.e., 0, 1, ••• 2Nb~r) 

= number of bits in the AID conversions • 

Evaluation of (57) requires only a specification of Pi to determine 
the corresponding value of X. The entire transfer, i.e., the expected 

echo power, Pi' corresponding to a given X,can be determined by 
"lagging" Pi through the conversion range. The integration can be 

performed by "table~ookup"if the class boundaries, l3m, are expressed 
in units of dB from P. (appendix E). . J. 
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5.2 Variance of the Estimate 

The variance of the integrator output depends on (1) the input 
variance, (2) the variance due to processing, and (3) the number of 

independent samples in the average. Range interval and digital mul­

tiplier (~) options available to the operator allow an independent 

choice of the number of range and time samples with a resulting choice 

of estimate standard error, which we examine in th~s section. 

A variance flow<diagr~m of the WSR-57 integrator (fig. 10) gives 
the variance associated with each of the operations in the scheme. 
Since the processing variance is statistically independent, the com­
posite variance is the sum of the individual variances. At any stage, 
the estimate variance, O'E2, is merely the input Signal variance pius 
the variance due to processing up to that point. The analog output 

2 variance, O'a ' can be 

(58) 

where the above symbols are defined in figure 10 or have been previous­
ly defined in the text. 

The estimate standard deviation for the analog output is tabulated 

in table 7 for various operator options of the WSR-57 integrator. The 
equivalent number, Ne , of independent samples has been computed assum­

ing that samples to the time integrator are statistically independent. 
The variance of the digital output can be expressed as 

2 2 2 
2 0'. 0'10'2 2 

0' = ~ + -=:..9.:!: + -.9:..... + ( 59 ) 
b NIRNe NRNe Ne O'q5 

where (j~5 is the varianc~ due to the six bit roundoff for recording 
and is equal to 0.085 dB Table 8 gives the standard deviation of 

the digital estimate. 

The estimate variance depends on the statistical dependence 

between, as well as the number of, samples in the estimate. The 
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Figure 10. Variance flow diagram for the digital 
integrator designed for NSSL' s ~vSR-57 radar. 
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Table 7. Mean Power Estimate Standard Deviation at Analog Output of 
the WSR-57 Digital Integrator •. Table 7 gives S.D. for Various Con­

/ditions of Multiplier Constant and Range Averaging Interval. 

2 -4 2-5 

1 

STANDARD DEVIATION dB 

0.25 2 1.2 1.92 1.31 .0.91 0.64 

0.5 4 1.8 1.57 1.07 0.75 0.52 

1.0 8 3.2 1.18 0.81 0.56 0.39 

Table 8. Mean Power Estimate Standard Deviation of Digital Output of 
the WSR-57 Digital Integrator. Table 8 gives'S.D. for Various Con­
ditions of Multiplier Constant and Range Averaging Interval • 

.... 2 2-3 -4 2-5 2 2 
7 15 31 63 

STANDARD DEVIATIO 

0.25 2 1.2 1.94 1.34 0.96 0.70 

0.5 4 1.8 1.60 1.11 0.80 0.60 

1.0 8 3.2 1.21 0.85 0.63 0.49 
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choice of S, the multiplier constant of the time integrator, .should 
be based on the expected Doppler variance (sec. 2.2) from which the 

statistical behavior of the samples can be predicted and independence 
or the ~egree of correlation can be inferred. When the input samples 
are statistically independent, Ne (derived in sec. 3.2) is the variance 

reduction. However, pulse-to-pulse correlation decreases the equiva­
lent number of independent time samples. The decrease depends on the 
degree of correlation and to some extent on the number of samples. 
Knowing the correlation, we can calculate the number of statistically 
independent samples from (4) as was done for figure 3. The ratio of 
the output standard deviation for correlated input samples to the 

standard deviation assuming statistical independence is shown in 

figure 11 for an assumed Gaussian input correlation. The standard 
deviation of the Gaussian correlation is determined by the velocity 
spectrum standard deviation (Nathanson, 1969). The ratio, shown in 

figure 11, may be used to adjust the confidence of the mean estimate 

when the input samples are correlated. 

1.6 

1.4 

b 
" I 2 ". b 

5.3 Analog Data 

5.3.1 Correlation and resolution 
in azimuth 

The two types of output data 

sets from the integrator are anal , . 

1.0 '-_..J.._--'_~..L..'-";;;:Z:=--' (for the display) and digital (for· 
.5 1.0 1.5 2.0 2.5 3.0 recording). Since these are two 

O".v' m sec-I 

Figure 11. Ratio of the output 
sample standard deviation for 
correlated input samples, cr 
to that obtained for statis~!­
cally independent samples, crT' 
versus velocity spectrum stan­
dard deviation, crv .WSR-57 
radar parameters assumed. 
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different data formats (the analog 

display is nearly continuous in 
azimuth and segmented in range; 
the digital field is segmented in 

both range and aZimuth), the 
correlation is different for the 

two data sets. For the analog 



display the autocorrelation function in the azimuthal direction is 
(D.16) in which T, in terms of angular displacement t.8 and angular 
velocity .0., is 

T = t.8/.o. • 
The normalized autocorrelation function of the output between locations 
spaced t.8 is 

R (n) = 
o 

68 
exp (-I-I} 

.o.Te 
(60) 

where we assume that the antenna azimuthal beam width is much less than 

ATe and the input samples are ind~pendent. The azimuthal correlation 
is along arcs of constant range. A quantity of interest is the dis'" 
placement required for output sample independencew For most practical 
applications, we consider a data set to be statistically independent 
if the correlation coefficient between consecutive samples in the 
series is less than about 0.05 which, from (60), implies an antenna 
jisplacement of 68 = 3.o.Te • The relationship between the normalized 

~orrelation coefficient of the output data and the azimuth displacement 

)etween radial samples is shown in figure 12. Since the antenna beam 

Z 
1.0 1.0 

0 
J= 
« .... .8 
-leo 
W-" 
0::0:: 
0:: . .6 0 
0 .... 
OZ 
W!:!! 4 NO 
:::iLL 
«LL 
:EW 

~8 
.2 

Z 

0 
-5 -4 -3 -2 -I 0 2 3 4 5 

RATIO OF ANGULAR DISPLACEMENT TO TIME CONS"TANT. fle/D. 
Te 

Figure 12. Normalized output autocorrelation coefficient after 
averaging, R (n), versus angular displacement between output 
samples, t.8,ofor a uniform reflectivity field. 
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width correlates the output samples as shown in figure 4, the time 
constant, Te can be selected so as not to seriously degrade the beam 
resolution by equating 

8 = 3-1'f1 1 J1,..J.e· (61) 

The above equation forces equality between the correlation due to 
beam width and integrator time constant. However, if the Te is 
selected on the basis of variance reduction, it is possible that azi­
muthal resolution would be sacrificed. Otherwise (61) defines a Te 
(for given n, 81 ) which in turn fixes power estimate variance. When 
81 « 3nTe, the spatial resolution of the analog field is dictated by 
the system transfer function. In terms of the azimuthal angle, this 
transfer is described by (D.l) where f = n8;1 is substituted (8s 
is the azimuthal scale size). The parameter usually used to describe 
the "cutoff-scale," esc' associated with this type of transfer is the 
halfpower point. 

This occurs at 

esc = 21lnTe • (62) 

Thus scale sizes es less than e are effectively filtered (not sc 
resolved) because of digital integrator lag. By decreasing Te' we can 
increase the resolution of azimuthal scales up to the limit dictated 
by the beam width. 

5.3.2 Correlation and resolution in range 

The correlation of analog data sampled in range is, for most 
practical purposes, equal to unity over the range averaging interval, 
~R, and zero otherwise except for the range interval of 0.25n miles. 
Following the methods outlined in appendix C, the correlation between 
adjacent range averages results in a correlation coefficient of 0.267, 
0.067, 0.017, for the 0.25, 0.5, and 1 n mile intervals, respectively. 
The correlation p (R) along the radial coordinate (R) is given, to a 
good approximation, by 
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p (R) :; 1 

p (R) = 0 

R - l\R ~ R ~ R+ 6R . cT··, 'c T 

otherwise 

when the spatial pulse width is small compare,d with l\R.· The range, 
Rc' is to the midpoint of ~. 

(63) 

For the above condition, the radial transfer function, A(~), is 
that of a zero order hold (Kuo, 1963), which is given by 

.:... sinirK~ 
A(~) - I TT~LSR- I (64) 

where ~is the radial wave number and, in terms of the range scale 
. . K R -1 

S'1ze, 1S R = s • 

This function is shown in figure 13. The same definition of cut­
off applied to (60) produces a cutoff range scale size Rsc = 2.26 AR. 
Thus range scale Sizes, R , smaller than 2.26 AR are effectively fil-. s . 
tered by the range averaging circui~s. 

5.4 Digital Data 

5.4.1 Correlation and resolution 
in azimuth 

The autocorrelation coeffi­
cient and transfer function of the 
azimuthal coordinate can be derived 
from (0.16) when the sampling in­
terval is equal to or larger than 
3.n.Te • The numerical value of the 
correlation coefficient is given 
by (60) with AS equal to the 
sampling increment. 

If the parameter AS/ATe is 
less than about 3, the resolution 

...J 1.0 
S 
Q 0.9 
~ 
~ 0.8 

~ Q.7 

ti~ 
~~0.6 
LL • 
ClZ 0.5 
ZO 

~t; 0.4 
ClILI 
-0: 
~Ci 0.3 

~ 0.2 

E ii 0.1 

~ 
001 2 3 4 5 6 7 8 9 10 

RATIO OF RANGE SCALE SIZE TO RANGE 
AVERAGING INTERVAL Rs/AR 

Figure 13. Spatial scale ampli­
tude weighting function along 
the radial. 
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of the digital field approaches that of the analog field. If this 
parameter is greater than about 3, the resolution is determined by the 
amplitude transfer for a zero order hold at the sampling increment. 

This transfer function is 

sinlTK8~e . 
A(K8) = I· lTK ~e I 

8 
(65) 

where Ke is the azimuthal wave number and can be expressed in terms of 

the azimuthal scale size 8s as 

where 
A(Ke) = amplitude weighting function versus azimuthal 

wave number 
~8 = sampling increment. 

A cutoff scale size, 8 ,is defined in tresame manner as the sc 
cutoff length for the radial dimension, i ... e., 

8 = 2.2668 • sc 

The cutoff arclength (Sc) is of course range dependent through the 
relationship 

S = R8 • c sc 

5.4.2 Correlation and resolution in range 

(66) 

(67) 

The autocorrelation function and thus the filter function for the 

radial coordinate is the same as that of the analog data, since the 
sampling interval is the same. The amplitude weighting function versus 
radial scale size is shown in figure l3. 
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5.4.3 Redundancy of the digital data 

The amount of redundancy in the digital data may be determined by 
comparing the variance of the digital field having an autocorrelation 

coefficient (60) with the variance that would be obtained if the a~to­
correlation of the data set were zero (statistically independent sam­
ples). This expression for the ratio of the number of samples in the 
set, N , to the number of statistically independen.t samples in the set, s 
NI , may be obtained by using (4) written here, for convenience, in 
terms of the output parameters, 

2 . N -1 I I 
°oc Ns s Ns - K R (n) - = - = E (KL) (68) 
a 2 NI k=-(N -1) Ns 0 

wnere 
2 

ace = 

o s 

variance of the output with autocorrelation given 
by R (n) (KL) 

o 
a

0

2 = variance of the output with Rb(n) (KL) = 0 
(independent samples) 

= number of output samples in the data set 
:;:. 

NI = number of independent samples in the data set 

L = ratio of sampling interval to the effective response 
time, or in terms of the angular increment; L = 69 

.n.Te 
. 

The above ratio is shown in figure 14 as a function of the number 
of samples in the set and with the autocorrelation coefficient as the 
va~iation parameter. The value listed for Ro(n) is the coefficient 
between adjacent samples (K = 1). 

The data set may contain from less than 10 to several thousand 
samples. If the redundancy is to be less than about 30 percent for 
these sets, then the parameter. L = 69/.n.T will have to be greater e 
than 2. 
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6 • SAMPLE RESULTS 

A 200 gate digital integrator, 

with range and time averaging param­

eters described in the previous 

section, is interfaced with NSSL's 

WSR-57 radar. PPI fields of loga­
rithmic power are presented to 

illustrate reflectivity field 
characteristics for various range 
averaging interval and integration 
time constant combinations. The 

Figure 14. Ratio of number of out-
put samples, N , to the.number integrator output is normally cate-
of statisticaliy independent out-gorized in about 10 dB intervals 
put samples, NT' as related to for PPI display so that quantitative 
the autocorrelation R (n) of the 
azimuthal samples. 0 estimates of reflectivity and its 

structure could readily be made. 

Nonintegrated, but categorized PPI field of logarithmic echo power 

estimates are shown in figure 15 which may be compared with integrated 

echo power fields (fig. 16). Maximum spatial resolution is obtained 

without integration and thus a nonintegrated power estimate field can 

form the basis for comparing apparent reflectivity structure. The 
4 ~sec pulse width of the WSR-57 radar provides a 600 m range resolu­

tion and the r.adar's antenna provides an angular resolution of 2.20 
(3 dB beam width). The l8 0/sec rotation rate usua·lly used provides an 
acquisition time of 123 millisec per sample volume. A photographic 

film such as figure 15 has effectively integrated the echo samples by 

continuous film exposure to the light flash of each sample; however, 

photographic integration does not compromise (for sufficiently small 
film grain size) spatial resolution which depends only upon radar beam 
and pulse widths. 

Figure 16 shows the echo power field generated wren the digital 

integrator averages power samples in both range and time. Each ver­
tical column of PPI photos corresponds, from left to right, to a 
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particular range averaging interval 

of 0.5, 1, and 2 km (1/4, 1/2, and 

1 n mile). Averaging time constant 

changes from 0.022 sec for each. 

display along the top to 0.193 sec 

along the bottom. Also indicated 

is the effective number, Ne , of 

independent samples averaged (sec. 

3.2.1) when samples into the time 

averager are uncorrelated. The 

sequence of photos were obtained 

within 4 min. Although the time 

averaged output is continuously 

sampled (i.e., digitally integrated 

output is converted to an analog 

form) the azimuthal pattern appears 

"blocky" because echo power cate­

gorization causes abrupt light 

level cnanges photographed within 
each range averaging interval. 

Time averaged output is also 

Figure 15. PPI eli splay of nonin­
tegrated logarithmic power 
resolved by the WSR-57 radar 
scanning a severe convective 
storm. Data taken~7:10:55 CST, 
4 June 1972. Range marks: 
40 km. STC is on; antenna eleva­
tion is 0.0°. Brightness level 
categories are 10 dB wide starting 
from -a 5 dBm. Contour code is 
Dim, Off, Bright, ••• for increasing 
power. 

sampled every 2° for magnetic tape storage. At the laO/sec antenna 
rotation rate this provides an output sample from each range interval 

every 0.11 sec, and figure 16 illustrates the reflectivity fields that 
could be reconstructed from digitally recorded echo power averages. 

The range samples are spaced 250 m (~l/a n mile) and because the 

range averaging interval for 0.5 km (1/4 n mile) is less than the 

WSR-57 range resolution (600 m), very little compromise in resolution 

is caused by averaging range samples. As pOinted out above, the 

film integration is active so that the digitally integrated data with 

Ne = 7 or 15 (L1R = 500 m) should provide resolution similar to that 
inherent in figure 15. Comparison of figure 16 (Ne = 7, 15, L1R = 500 m) 

confirms this deduction. Howev~r, as evident in tables 7 and a, the 

standard error of power estimate for each sample volume is nearly 2 dB. 

47 



~ LIl 
r-l 

C\I 
0 

II r-l .. 
~ r-.. 
<l r-l 

~ 
<;t 

LIl f'oI'l 

0 en 
0 

II .. 
r-.. 

~ r-l 
<l 

CJ 
a> 
en 

C\I 
C\I 
0 

r-.. 0 

II II 

Za> f:-fa> 

48 

CJ 
a> 
en 

\.0 
<;t 
0 

LIl 
r-I 0 

II II 

Za> f:-fa> 

<;t 
f'oI'l 

(X) 
0 .. 
r-.. 
r-I 

<;t 
LIl 

(X) 
o 
r-.. 
r-I 

;; .. 
en 
0 

r-.. 
r-I 



..p. 
1..0 

N ::: 31 e 

T ::: 0.094 sec 
e 

N ::: 63 e 

T ::: 0.193 sec e 

17:07:14 17:06:34 17:06 :54 

Figure 16. PPI displays of integrated logarithmic power showing "apparent" reflectivity struc ... 
ture modification with changes in range and time averaging parameters. T is the equivalent 
time constant of digital lowpass filter; N is the effective number of in5ependent time samples 
ave~aged. Range averaging interval: 0.5,e l , and 2 km. Range marks: 40 km (21.6 n miles~ 
Brightness level categories are: Dim, Light, Off, Bright, ••• for boundary power levels of 
-91, -81, -72, -68, -64 dBm. STC is on. Antenna elevation is 0.0°. 



Further reduction in standard error is made with resolution compromise. 

An increase in time constant to 0.094 sec (N = 31) and range averaging e 
interval to 1 km (~/2 n mile) produces a spatial resolution degrada-
tion of 50 percent (sample volume increases by 50 percent), but standard 
error of power estimate decreases to 0.8 dB (assuming statistically 
independent samples into the integrator). The latter time constant and 
range averaging interval are used in rou~ine data collection at NSSL. 

7. CONCLUSIONS AND SUMMARY 

This work has shown that digital integrators can be successfully 
interfaced with the WSR-57 weather radar to reduce the variance of 
reflectivity estimates without seriously degrading spatial resolution. 
An exponentially weighted window is used to average samples selected 
in each of 200 range bins. A multiplier constant (S) of 2-4 should 
provide approximately 31 equivalent independent time samples in the 
time averager which reduce power estimate variance to less than 1 dB 
while not compromising the spatial resolution characteristics of the 
WSR-57 radar. Averages of range samples further help to reduce reflec­
tivity estimate variance for a small loss in range resolution. 

Sections 2.1 and 2.2 present a review of the basic statistical 
properties associated with weather echoes and appendix A relates, in 
a closed form, the expected value and variance of the mean input power 
estimate (proportional to reflectivity) for three receiver types 
(linear, square law, and logarithm). Section 2.3 connects the vari­
ance of the input sample mean to the velocity spectrum variance, which 
in turn is coupled, in sections 2.4 and 2.5, to radar parameters 
(e.g., beam width, pulse width, etc.) and meteorological status (degree 
of tur bu1ence, shear, etc.) of the sample volume. The formula 
CJv = /2 + (4.6 x 10-5) ~ m sec-I, derived in section 2.5 and based 
upon computation and measurement with. the WDS-71 Doppler radar provides 
an estimate of spectrum standard deviation versus range ·for the 
WSR-57 radar. 
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The statistical properties of the echoes and choice of receiver 

determine the statistical properties of the samples applied to the 

input of the digital integrator. The large variance (31 dB2 for a 

logarithmic receiver) associated with single sample reflectivity 

estimates dictate that large numbers of input samples need to be 

averaged. The variance reduction can be achieved by range averaging 

(sec. 3.1) or by time averaging (sec. 3.2). The merits of range· 

integration and the concomitant loss of range resolution versus the 

reduction of estimate variance due both to signal variance and receiver 

noise are presented in sections 3.1.2 and 3.1.3. Estimate bias due 
to range averaging over regions of reflectivity gradients is derived 

in appendix B. The characteristics of a digital integrator are 

derived in section 3.2 and appendix D, where it is shown that the 

multiplier constant of the digital integrator relates to the inte­

grator time constant (46) and input sample interval (i.e., PRT). 

Section 4 derives the variance introduced by the digitization 

process in the A/D converters, and truncation of words in the time 

integrator feed-back loop. A variance flow diagram (fig. 10) lists 

the contribution to estimate variance for the integrator designed 

for NSSL's WSR-57 radar. The mean power (reflectivity) estimate 

standard deviation versus multiplier constant and range averaging 

interval is tabulated in tables 7 and 8. 

Characteristics of the.output samples and the relation between 

output correlation and resolution are presented in section 5. It is 
shm'lnthen that variance reduction is achieved at the expense of 

range and/or azimuthal resolution. A typical output of the inte­
grated analog display is given in section 6 and is compared with 

unintegrated output. 
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APPENDIX A 

COMPARISON OF VARIANCE IN THE POWER ESTIMATES 
OBTAINED FROM THREE TYPES OF RECEIVERS 

In this section we shall derive formula for determining the sta­
tistics of input mean power estimates for each of the three receiver 
types: (1) square law, (2) logarithmic, and (3) linear. Althoughthis 
problem has been approached by others (Marshall and Hitschfeld, 1953; 
Smith, 1964) closed-form solutions for the variance of the estimates 
of the mean have only been obtained for the sqUare law receiver. Smith 
(1964) conducted a statistical experiment with the aid of a digital 
computer to determine numerically estimate properties for each of the 
three receiver types. Thus, no easy and direct comparison of rece~ver 
performance is available. 

Although a direct numerical solution may be necessary when estimates 
of the mean input power are formed from k independent sample averages 
when k is small·(i.e., 1, 2, 3 ••• ), we shall here provide a closed-
form solution, valid for large k, ,for practical purpose k ~ 8 may be 
suffiCient, Smith, 1964) from which the variances of power estimates 
can be directly compared. 

The large variances of meteorological echo power impose the need 
to average output voltage samples to obtain satisfactory estimates of 

the mean input power, Pi. The problem is to estimate Pi from averages 
of k independent output samples. The problem of estimation is compli­
cated by the fact that sample averages are performed on the output, W, 

of a receiver in which W is not linearly related to P. (except for a 
~ 

square law receiver). Thus an estimate ~k 

"1 k 
Wk=-EW 

k 1 k 
(A.l) 

of the mean output W is made, and then the receiver transfer function 
" -is used to obtain an estimate P., of P.. The problem we address is: 
~ ~ 

Given an output density function having mean Wand variance a 2, what 
/I w 

is the expected value and variance of the estimate P. obtained from k 
~ 

sample average estimates of W? 
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A difficult problem is to de'termine the probability density 
function of k sample averages of the output when k is a small number. 

However, by invoking the central limit theorem for large k, this proba­
bility density approaches a Gaussian function having a mean equal to 
the true mean Wand a variance equal to IT 2/k independent of the single w 
sample estimate probability density f (W). Thus we shall assume that 

A w II 
the output estimates wk have a probability distribution f(Wk ) given by 

(A.2a) 

where 

(A.2b) 

II 
From each estimate W

k 
we obtain, through the receiver transfer char-

II II 
acteristic, an estimate Pi. The probability density f(Pi ), not 
necessarily Gaussian, of the input estimates ~i is related to f(~k) 
as (papoulis,1965)j 

(A.3a) 

1\ -1 It ' 
where Wk = g (Pi) is the solution of 

~nd g -1 is the receiver transfer function. In the following, we con­
sider separately the three receiver transfer functions and derive for 

II 
eaoh the expected value and variance of the estimates Pi. 

A.I Square Law Receiver 

For the square law receiver, the input power and output voltage 

relate linearly (see table 2), 
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W = aR.P. 
1 1 

(A.4) 

so that the probability density of the input estimate is also Gaussian* 
with an expected value and standard deviation of ~. given by 

1 

(A.Sa) 

.f " P. a = VAR[PiJ = ~ • (A.Sb) 

A.2 Logarithmic Receiver 

In this case, the receiver input mean pcmer 
output mean voltage estimate (see table 2) as 

1\ 

estimate relates to 
the 

1\ 
Solving the above for Wk 

and noting that 
1\ 

Wk/b 
" = _10~:--P. R 1 C. • 

1 

1\ 
blogcR.P. 

1 1 

dP. ~ /b 
10 k inlO 1 _ 

bcR. 
1 d~k, -

, 

1\ 
we find that the density function for P. is given by 

1 

1\ b/k exp{-k[blog(CR.~.)-~J2/2a2} 
f (Pl') = _______ ---::l:=--:;l=--__ -.:.:W_ 

ffn RrtlOa 2~. w 1 

(A.6a) 

(A.6b) 

(A.6c) 

(A.7) 

*For the square law receiver, one could just as well use the actual 
density function of k sample averages from Marshall and Hitschfeld 
and obtain the results (A.Sa) and (A.Sb). 
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The functional form of (A.7) is illustrated graphically in figure A.l. 

We see from the figure that the most probably estimate Pm of P. -I 2 
asymptotically approaches the value lOW b/cR . as k gets large; that 

f(~.) is not Gaussian; and ~. has a range ov~r all positive values. 
2 2 A . 

The expected value and variance estimates P. are found to be 
2 

A 
VAR[P.] = 

2 

cr 21nlO 
exp{~[w + w2kb J} 

a 2Rn210 
f exp[ w 2 J-I} J. 10 ,QnlOa 2 

~. exp{-E--[2W + kb
W

]}. 
2 

(A.8a) 

(A.8b) 

The above expected value and variance of the estimates of Pi depend only 
upon the mean value Wand variance cr 2 of the output random variable W, 

w 
and these latter parameters are obtained directly from the density 
function of the single sample estimates in table 2. For Rayleigh in­

put statistics, we have, from table 2, 

-<CL - K3 
ot-

A 

Pml Pm2 Pm3 Pi---" 

Figure A.I. Density function, 
f(P. ), for est.fmate~fof mean 
inpUt power. . 

2 2 
Pm=[IO(W/b)-aw Ikb IOge)J/CR

i 
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W= blog 0.56CRi Pi (A.9a) 

2 aw = (0.557)2b2. (A.9b) 

Substituting (A.9a) into (A.8a) and 
(A.9b) into (A.8b), respectively, 

A [A J . we . obtain E[P. J and VAR P. 2n 
2 2 

terms of the true input mean power 

P. 
·2 



(A.10b) 

which in the limit of large k approaches 

lim E[~.] = O.56P. 
k ..... c:o J. J. 

(A.ll) 

for the expected value in agreement with the theoretical results of 

Smith (1964) and experimental results of Lhermitte and Kessler (1966), 

and 

a = IVAR[~.] = O.72P./1k . J. . J. (A.12) 

for the standard deviation (S.D.) for which there is no closed form 
II . 

results. Note that (A.12) gives the S.D. of the estimates P. about 
J. 

the biased value, O.56?, of the expected value E[P.]. Since the bias 

is multiplicative, we n~ed to multiply all estimate~by a value (0.56)-1 

to have a more reasonable estimate of P .• It is easy to show that the 
II, 

unbiased estimates P., where 
J. 

J. 

(A.13) 

have a density function similar to (A.7) but have an expected value 
E[~~] = P. and a standard deviation 

J. J. 

1. II O. 72P. 1. 28? . 
VAR2 [ 'J - J. - J. Pi - o. 56/[ - /k. (A.14) 

Since the squa~.e,law receiver provides an unbiased estimate of Pi' it 

is convenient to compare (A.14), the S.D. of the unbiased estimate 

obtained with a logarithmic receiver, with (A.7b), the unbiased estimate 

with a square law receiver. 
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A.3 Linear Receiver 

For the case of a linear receiver, the output W linearly relates 
to input voltage amplitude v .. Again by invoking the central limit 

~ 

theorem, we assume that the density function of the output estimates, 
from k sample averages, can be expressed by the Gaussian density (A.2a) 
where 

~ 1 k A 
Wk=kl:Wk==av 

1 i 
(A.lS) 

is an estimate of W; a is the S.D. of the samples W (before averaging); w 
and W is the mean value of the output samples W. Assuming Rayleigh 

distributed input statistics (see table 2); 

a/TIR.'? 
w - ~ ~ (A.lGa) - 2 

a = ~2 (4-TI)R.P. w ~ ~ 
(A. 1Gb) 

where Pi is the input mean power. From eaoh of the output estimates, 
we find (through the receiver transfer characteristics) an estimate 
~ -P. of P.. That is 
~ ~ 

~ 2 A 2 

~. = Ri = ~ == g(~ ) • 
~ i a~R. k 

~ 

Applying (A.3) we get the follOWing density function 
A 

for the P.' s 
~ 

(A.17) 

A 
The expected value of P. is found by applying (A.17) to the equation 

~ 
co 

GO 



which upon integration (Gradshteyn and Ryzhik, 1965, 3.642(l)) yields 

A 12k Pilexp(- ~)}D_3(-~) 
E[Pi ] = 4Z (A.l8) 

~ 

where Z = kn(4-n) and D_3(-Z2) is a parabolic cylinder function. For 
large k, we use the asymptotic expansions of D (Gradshteyn and Ryzhik, 
1965, 9.246(2)) and retain only the principal terms to arrive at 

A ] n-lim E[P. =, P. , 
k->Q) l. l. 

(A.l9) 

A 
which shows that the P.'s are biased estimators. Equat.ion (A.l9) agrees 

l. . 

with the experimental result of Austin (l952). 
The variance of the estimates ~i is found by applying the formula 

(A.20) 

Upon evaluation, we 2 find that 0 is given approximately by 
-2 2 O.67P. 

o """ l. k • 

Since we have a biased estimator, the S.D. of the unbiased estimates is 
given by 

.l.. A l.05P. 
VAR~[pi] = jk l. • (A.2l) 

A . 
The statistical properties of p~ (in particular the variance) have not 

l. 
been numerically investigated by Smith. However, Marshall and Hitsch-
feld1s calculations indicate that amplitude averages might lead to a 

I better estimate of P. than averages of the logarithmic receiver output. 
l. 

Comparisons of (A.2l) with (A.l4) reinforce the use of amplitude aver-
ages. It is understood from the comparison that the average of linear 
receiver output samples produces a S.D. in the estimates of P.· quite 

l. 

close to that of the ideal square law receiver. For the logarithmic 

6l 



receiver to produce the same S.D. as a linear receiver, we need to 
process 

VAR[P~ ]l 
~ og = 

VAR[P~ ]lo 
~ ~n 

or SO percent more independent samples. 
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APPENDIX B 

BIAS IN RANGE AVERAGES DUE TO REFLECTIVITY GRADIENTS 

In this appendix, we discuss the mean power estimate bias caused 
by range averaging the logarithmic receiver output. Two range dependent 
reflectivity models are assumed in order to obtain limits· on the aver­
aging volume range size for given spatial variations of the ref~ectivity 
field. 

We define range averaging bias €R as the dB difference between two 

quantities: (1) the logarithm of the spatial average of mean power 
(log P), and (2) the spatial average of the logarithm of mean power 

(log P). That is, 

R +~R R +~R o 0 

€R = 10 [loglO[ tR J 1\ (R)dR} - ik J log lOP i (R)dRl dB • (B.l) 
R R o - 0 

The first term on the right of (B.l) is the true average (in dB) while 
the second term is that calculated from logarithmic receiver output 
averages. The digital integrator averages single sample estimates of 
log P. (the range averaged estimates of log P. are then averaged in 

~ ~ 

time), but it is easily shown that the order of time and range average 
is immaterial. Therefore, for sake of Simplicity, we assume the reflec­
tivity field to be time averaged before range averaging (i.e., bar over 
P. indicates time average). 
~ 

A first and simple model to visualize is a step increase in re-

flectivity or echo power. This is the same as Rogers Modell (Rogers, 
1971). Although not physically realizable, this could be a reasonable 
apprOXimation of the reflectivity field if the extent of the gradient 
were small compared with the range averaging interval and may be 
appropriate at the boundaries of severe storm cells. 

To derive the bias, assume a return power range dependence as 
shown in figure B.l. The spatial average of echo power is 
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PieR) 
-0 

10 Po LOG Po - 0 

(b) 

--ft----~--~-R 
Ro R.· R2 
f.=-~R---l 

(0) 

R 

Figure B.l. Range dependency of mean (time averaged) echo power (a), 
and logarithm of echo power (b) for a step change in reflectivity. 

(B.2) 

where the brackets denote range averaging. The spatial average of the 
log~rithm of return power is 

(B.3) 

Therefore the dB bias €R is 

(B.4) 

Equation (B.4) is plotted in figure B.2 as a function of 6~/6R for 
various values of the parameter "IDa;" in terms of dB of mean return 
power step. Figure B.2 shows that the bias is maximum when.the range 
interval is less than half filled with power Po. This is because the 
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logarithm function gives nonuniform 

weight to the pCMer distribution, 
resulting in disproportionately 
larger weight for smaller pCMers. 
For similar re9sons the bias is 
always positive (dB), which indi­

cates the spatial average of the 
logarithm of return power always 
underestimates the true spatial 

average pCMer. 
A more physically satisfying 

model of reflectivity field has no 
discontinuities in reflectivity 
or its gradients. An exponential 

ID 
":,10 

~ I 5dB 

~o~~~~~~~~=F~==~:;~ 
0: 0 0.1 0.2 0.3 0.4 0.5 0.6 p.7 0.8 0.9 1.0 

FRACTION OF RANGE INTERVAL • .o.R. HAVING A RETURN 
POWER OF LEVEL Po • .o.R1/.o.R 

Figure B.2. Range averaging bias· 
for a step change in reflectiv­
ity yersus range interval 6R1 having echo power lOa times ~he 
balance of the averaging inter­
val t.R. 

spatial distribution of reflectivity meets these requirements, and 
biases in estimates of average reflectivity will now be determined for 
this case (Rogers Model 3). The spatial distribution of mean return 
pCMer.with range is depicted in figure B.3(a) and is expressed func­
tionally as 

(B.5) 

'1 II 
Fl(R) I~Pi LOG I1(R) I ~LOG 11 

_11 11 Po - -
-f. 

~R ~R 

Ro R- R. R- R. 
(0) (b) 

Figure B.3. Range dependency of echo power (a), and logarithm of 
echo power (b) for an assumed exponential reflectivity distribution.· 
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where b = range power gradient and is assumed constant over the aver­
aging interval 6R = RI-Ro• The spatial distribution of the logarithm 
P. is depicted in figure B.3(b) and is expressed functionally as 

l. 

log P.(R) = log P + b(R-R ) 
. l. 0 0 

(B.6 ) 

where b = 10 d£iOg P) ~ is the constant gradient of log (reflectivity) 

and b is the· power change, expressed in dB, across 6R. Of course, 
(B.6) applies for negat~ve gradients. 

The spatial average of PieR) is given by 

10 P (10b6R/IO_l ) 
<P. (R» = _-..-.:0;...... ____ _ 

l. b6RJnlO. 
(B.7) 

whereas the spatial average of log PieR) is 

(B.8) 

Using (B.l) the bias is 

10bbR/IO_l E:R = 10[1-b6R/20 + log (b6RR.ril0 )] dB • (B.9) 

It can easily be shown that (B.9) is symmetric with respect to b, and 
hence (B.9) can be 'used as well for negative gradient values. It is 
interesting to note that the bias magnitude depends on the total change 
of mean power within bR, which is given by power gradient-range incre­
ment product. Assuming that the actual reflectivity distribution can 
be well approximated by segments of exponential functions, the bias in 
each segment would be relateq by (B.9) to the power difference across 
each segment. Hence estimation of errors in averaging the total 
reflectivity field may be determined. Equation (B.9) i.5 plotted in 

figure B.4, and since the bias ~s always positive~the estimates of the 
mean power returned from an averaging volume will be biased below the 
true mean value. 
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The expected gradient for an 
t..:!tire data field will be a con­
straint on the maximum range aver­
aging interval. Measurements at 
NSSL on five storms with a range 
interval of a ~sec yielded an 
expected bias of 0.75 dB to 1.25 dB 

due to this effect (Sirmans, 1968). 
Measurements made at the Applied 
Physics Laboratory (Nathanson, 
1969) indicate a predicated bias of 
less than 0.5 dB over an 8 ~sec 
range interval. 
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Figure B.4. Range averaging bias 
for an exponential range power 
distribution. 

The bias of a particular range increment could be very large 
compared with the average error for the reflectivity field. Sirmans 
noted biases as large as 12 dB, and Rogers (1971) reports range power 
gradient$ that would result in even larger values. 
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APPENDIX C 

AUTOCORRELATION OF RANGE SAMPLES 

Assuming a reflectivity field with "white noise" properties (Le., 
power scattered from contiguous differential volumes are uncorrelated) 
and a rectangular transmitter pulse, the normalized autocorrelation 
function of the echo samples are derived herein. Ari echo sample is the 
ensemble sum of signals returne~ from each differential volume having 
a range extent dR and an angular extent determined by the antenna beam 
width. The ensemble average extends over the number of dR's contained 
in the interval CT /2. We shall derive the correlation between these p . 
ensemble averages using the methods outlined by Burington and May (1953). 

We assume the signal associated with each differential volume to 
be statistically independen~ and the ensemble to contain k contiguous 
complex samples from the series, 

where ~ is the Signal associated with the kth differential volume. The 

k sample ensemble is 

k+U-l 
K (u) = 1 E X. 
-1< k j=u J 

u = 1, 2,· 3, ••• (C.l) 

where u is a number proportional to the sample increment range location. 
The correlation between averages S(l) and S(u) where 

lk 
= - E x. 

k i=l J. 

_ 1 k+U-l 
Sk(u) - k E x

J
' 

j=u 

can be expressed as (Burington and May, 1953, p. 131) 

Cov [x., x.] 
P (k, u) = ___ --=:.J. - ..... J:--i~ 

[Var x. Var x. ] 
J. J 
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If the mean and variance of the two averages are the same (i.e., uni­
form reflectivity field), the denominator of (C.3) reduces to 

2 Var [x.] = Var Ex.] = cr 
~ J 

(C.4) 

The numerator is the covariance of the two series that can be expressed 
in terms of the correlation, p .. , between samples comprising the series 

~J 
and the sample standard deviation as 

Cov [x.;, x.] = p.. a. cr. • 
... J ~J ~ J 

(C.S) 

Because we have asslDDed statistical independence between differential 
volumes and equality of the standard deviation, then, 

p •• =1 
l.J 

i = j 

P •• = 0 . l.J i :I j . (C.G) 

Noting that i = j for the number of "common" samples k-u+l, (C.3) re­
duces to 

p(k,u) = (k-U+~) cr
2 = k-u+l • 

cr 

The normalized correlation is given by 

• 

(C~7) 

(C.S) 

The length of the k sample ensemble average is proportional to the 
sample volume depth, CTp/2, andu-lis proportional to the spacing 
CT /2 between range samples. This results ina signal autocorrelation, s . .. . 
p s (1' S ), which varies with 1's as 
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I 
I 
\ 

o<hl<'T 
S P 

= 0 otherwise (C.9) 

If the mean reflectivity varies with range, the means of the 
ensemble averages will not be the same and the variances will increase 
over the variance for uniform reflectivity by an amount depending on 
the mean reflectivity variation. The autocorrelation (C.9), derived, 
for the receiver input signal amplitude is, for sake of simplicity, 
assumed to be the correlation of samples at the receiver output. Al­
though the assumption is valid for a linear receiver, a rigorous treat­
ment needs to treat the correlation transformation through a logarithmic­
receiver (Davenport and Root, 1958). 
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APPENDIX D 

PROPERTIES OF THE DIGITAL LOW PASS FILTER 

The lowpass RC filter is extensively analyzed in the engineering, 
literature, and the digital integration in time (pulse to pulse) may 
be described more readily by the equivalent continuous analog approxi­
mation than by the rigorous Z-transform theory required for the sampled 
case (Gold and Rader, 1969). The problem is to find a digital loop 
that has a system function (the Fourier Transform of the unit impulse 
response) equal to the sampled system function of the lowpassRC filter 

"First consider the system frequency response Ha(f) of the lowpass RC 
filter given by (Hsu, 1967), 

1 = 1 + j2nfTe 
(D.l) 

where Te is the time constant of the RC filter. 
Consider now the recursive digital lowpass filter described by 

the algorithm (Bendat and Piersol, 1971, eq.9.31) 

where 
y = nth output 
n 

x = nth input 
n 

(D.2) 

and where ~ is a positive constant less than one, which we will write 

for convenience in the form 

(D.3) 

The frequency response, Hn(f), of the digital filter is given by 
(Bendat and Piersol, 1971, eq. 9.32) 
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H (f) = S 
D 1 - (l-S) exp[- j2nfTs J (D.4) 

which under the restrictions, T »T and 2nfT «1, (D.4) may be e s s 
expressed as 

(D.S) 

Thus the digital lowpass transfer function approximates the analog 
under the above restrictions. The equivalent time constant, T , of . e 
the digital lowpass filter is obtained in terms of the digital multi-
plier constant, S, and the sampling interval, Ts ' by solving (D.3) 

T 
T = s e -1 . 

. in(l - S) 

Expanding ~n(l - S)-l 4n a Taylor series, we get 

Hence, 

2 3 
to(l - S)-l = - In(l - S) = S + ~ +.~ t 

Ts 
Te = ---

0) ~ 
E. n 
n=l 

... 

(D.G) 

(D.7) 

The ratio of Te t9 Ts for the values of S used in theWSR-57 processor 
is given in table D.l. Note that truncating the series to the first 

two terms approximates the quantity T IT by N 12 (i.e~, (45») ,arid e s e 
that this approximation is within O.G percent of the exact value for 
the worst case (S = 2-2). 

We will now derive two parameters of an equivalent analog RC 

filter that will be helpful in specifying the statistical properties 
of the digital integrator. These are: (1) equivalent integration 
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Table D~l. Equivalent Time Constant for the WSR-57 Processor. 

Multiplier Number of Samples T Ne Constant in Time Average· e 
(13 ) (Me) rr-. "2 s 

2 -2 
7 3.48 3.5 

2 -3 15 7.49 7.5 

2 -4 31 15.49 15.5 

2 -5 63 31.5 31.5 

time and (2) autocorrelation of the output. Both will be calculated 

for a statistically independent (white noise) input signal. 

The equivalent integration time, Ta , i.eo, the width of the 
equivalent rectangular time window, can be derived by equating the 

mean square output VOltage, y2(t), to the mean square input voltage, 

X
2(t), averaged with uniform weighting for a time Tao 

dt • (D.8) 

2' 2" Equation (D.8) expresses the· conservation of energy where y = x for 

the assumed stationary random process. The mean square input voltage 

is given by the autocorrelation of white noise at zero lag (Hsu, 

1967, eq. 7.129) 

(D.9) 

where K is the constant spectral density and 6(t) is the delta function. 

The mean square output voltage is given by (Hsu, 1967, eq. 7.149) 

2 K 
Y (t) = 2T (D.10) 

e 
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Substituting (D.lO) and (D.9) into (D.8) and solving for Ta , we have 

or 

T = 2T a e (D.ll) 

Thus the equivalent integration time is twice the time constant of the 
lowpass RC filter, or , in other words, T is the width of an equiva­

a 
lent rectangular time window needed to achieve the same variance 
reduction of output as a lowpass analog filter with time constant Te. 

The autocorrelation function, RO(T), of the filter output is 
(Hsu, 1967) 

00 00 

Ro(T) = f h(t) J h(o) Ri (T + 0 - t) dodt 

where h(t) is the unit impulse response of the filter (Le., 

h(t) = liTe exp[- t/Te]' t ~ 0), Ri is the autocorrelation of the 
input signal, 

(D.12) 

(D.13) 

6(T) is the Dirac delta function, and K is a constant equal to the 
spectral density. Thus for a lowpass RC filter the autocorrelation of 
the output is given by 

00 00 

RO(T) = J ~ exp[- ~] J ~ exp[- TO] O(T + 0 - t) do dt , 
·oe e e e-

which ·after a certain amount of perseverance can be shown to be 
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L [1 - exp(- 2tl/T )] exp(- TIT) 
2~ . e e 

(D.14) 

where tl is the time after the first sample entered the integrator 
(i.e., time at.which first output sample is taken) and 
T = t2 - tl (t2 > t l ) is the interval between samples. For steady 

state (i.e., tl - 0), 

(D.15) 

For practical purposes the steady state is assumed to. be achieved (Le. " 
95 percent of Ro(T» at a time 3Te from the first sample entered the 
integrator. The normalized autocorrelation function is given by 

(D.16) 

The value of the normalized autocorrelation function at the output 
sampling interval is the correlation coefficient of the output data set 

sampled at intervals TS. 
Although the above is derived for an assumed analog filter, the 

results apply to the digital integrator if Te is taken from (46) as the 
digital integrator time constant and used in (D.16). 
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APPENDIX E 

Cm~LATIVE DISTRIBUTION FOR THE PROBABILITY 
DENSITY OF THE LOGARITHM OF ECHO P(lt./ER·· 

The follC»ling tabulation is the cumulative distribution of log Pi 
used to calculate the relative frequency of occurrences of the digital 
classes necessary to determine the digit,al integrator output-mean pC»ler 

input estimate transfer integrator characteristic. The boundary 

values, tm' t m+l , of the mth digital class are defined in dB units 
above (or belC»l) the mean input pC»ler.The value t for any input m 
mean pa-ler (P.) is given by the difference B - 10 log P.. The area 

J. m l. 
tabUlated (table E.l) is the integral value of Prob[log PiJPi ] between 
..00 and t , where _co is the lower bound of the zeroth class. The rela-, m 
tive frequency of occurrence (Fm) of the mth class for a given Pi is 

t m+l tm 
Fm = J Prob[log p] d log P - J Prob[log p] d log P • 

This is shC»ln graphically in figure E.l. The digital output average, 
X, corresponding to a given mean pC»ler ,input is 

where 

M 
X = L: Fm· m 

m=O 

x = digital output for a given mean power input 
m = digital class weight 
M = number of digital classes 

Bm = digital class boundary in dBm. 
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Table E.1. Cumulative Distribution of Probability Density of the 
t!10 

Logarithm of Echo Power. Area = J Frob (x) d x.* 
..ex) 

t Area t Area t Area t Area 

-25.0 .0030 -16.0 .0247 -7.0 .1808 2.0 .7947 
-24.5 .0034 -15.5 .0276 -6.5 .2005 2.5 .8307 
-24.0 .0038 -15.0 .0310 -6.0 .2220 3.0 .8637 
-23.5 .0043 -14.5 .0347 -5.5 .2455 3.5 .8930 
-23.0 .0048 -14.0 .0389 -5.0 .2710 4.0 .9185 
-22.5 .0055 -13.5 .0435 -4.5 .2986 4.5 .9399 
-22.0 .0061 -13.0 .0487 -4.0 .3284 5.0 .9573 
-21.5 .0069 -12.5 .0545 -3.5 .3602 5.5 .9708 
-21.0 .0078 -12.0 .0610 -3.0 .3941 6.0 .9810 
-20.5 .0087 -11.5 .0682 -2.5 .4301 6.5 .9882 
-20.0 .0098 -11.0 .0762 -2.0 .4678 7.0 .9931 
-19.5 .0110 -10.5 .0851 -1.5 .5073 7.5 .9961 
-19.0 .0124 -10 •. 0 .0950 ·-1.0 .5480 8.0 .9980 
-18.5 .0139 -9.5 .1060 -0.5 .5897 8.5 .9990 
-18.0 .0156 -9.0 .1182 0.0 .6320 9.0 .9995 
-17.5 .0175 -8.5 .1316 0.5 .6742 9.5 .9997 
-17.0 .0196 -8.0 .1465 1.0 .7158 10.0 .9998 
-16.5 .0220 -7.5 .1628 1.~ .7562 

*Frob (x) = m exp [m (x-xo ) - exp m (x-Xo )]' and x = log Pi' 

Xo = log Pi' m = ~n 10, t = lOx. 

PROB[LOG 'lIP;]- m exp[m(LOG 'l/P;1- exp m(LOG 'lIP; I] 

P. -MEAN INPUT POWER 
m-In 10 

Q.~';:---::-=---~"""""--""""=-----JI--...::~---,,I t ,dB 
10 .15 

, " " C 
25 5075 95 99.9 
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Figure E .1. Probabi1i ty distri­
bution of log P./p.. Shaded 
area ~s the probability that 
-10 < 10 log (P./p.)< -5. 
Scale C is the pro~. bili~, in 
percent, that 10 log P./p~ is 
less than the value on~t~~ taxis. 
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